Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites

A Imperato and G Di Chiara
Journal of Neuroscience 1 April 1984, 4 (4) 966-977; https://doi.org/10.1523/JNEUROSCI.04-04-00966.1984
A Imperato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Di Chiara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A method for the estimation in rats of the in vivo release and metabolism of dopamine (DA) is described. The method is based on the dialysis principle and consists of inserting transversally in the striatum a thin (0.2 mm) dialysis tube (Amicon Vitafiber) which is then perfused with Ringer. The Ringer, flowing at a constant rate of 2 microliters/min in the dialysis tube, extracts low molecular weight substances from the surrounding tissue by way of simple diffusion along a concentration gradient. At the distal end of the dialysis tube, the Ringer is collected every 10 to 20 min and directly injected into a high performance liquid chromatographer (HPLC) equipped with reverse phase octadecyl sulfate columns which separate DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). These substances are then quantitatively estimated by oxidative electrochemical detection. The basal output of DA is 0.3 pmol/20 min, whereas the outputs of DOPAC and HVA are 60 and 20 pmol/20 min, respectively. In basal conditions the output of DA, DOPAC, and HVA is stable over at least 10 hr. Histological examination of the track left by the dialysis probe in rats after 10 hr of continuous dialysis reveals very little damage and normal neuronal morphology in the vicinity of the dialysis tube. Increase of the K+ concentration in the Ringer to 30 mM produced a sharp, reversible increase of DA output. Both the basal and K+-stimulated release were Ca++ dependent, because omission of Ca++ abolished basal and K+-stimulated DA release. Electrical stimulation of the nigrostriatal DA neurons in the medial forebrain bundle sharply increased DA output. Amphetamine sulfate in low doses (1.0 mg/kg, i.v.) produced a 9-fold increase in DA release and decreased DOPAC and HVA output. alpha-Methyl tyrosine (150 mg/kg, i.v.) reduced within 2 hr DA release to 15% of basal values and in parallel also decreased the output of DOPAC and HVA. Reserpine (5 mg/kg, i.p.) reduced DA release but in a slower fashion than alpha- methyl tyrosine and increased DOPAC and HVA. Pargyline (75 mg/kg, i.p.) produced a 4-fold increase of DA release, while it rapidly brought to zero DOPAC and HVA output. gamma-Butyrolactone (700 mg/kg, i.p.) rapidly and lastingly reduced DA, DOPAC, and HVA output. The biochemical and histological results obtained indicate that the method is suitable to estimate in the rat the changes in the release o f endogenous DA and its metabolites which take place in vivo under administration of centrally acting drug.

Back to top

In this issue

The Journal of Neuroscience: 4 (4)
Journal of Neuroscience
Vol. 4, Issue 4
1 Apr 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites
A Imperato, G Di Chiara
Journal of Neuroscience 1 April 1984, 4 (4) 966-977; DOI: 10.1523/JNEUROSCI.04-04-00966.1984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites
A Imperato, G Di Chiara
Journal of Neuroscience 1 April 1984, 4 (4) 966-977; DOI: 10.1523/JNEUROSCI.04-04-00966.1984
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.