Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl

WE Sullivan and M Konishi
Journal of Neuroscience 1 July 1984, 4 (7) 1787-1799; DOI: https://doi.org/10.1523/JNEUROSCI.04-07-01787.1984
WE Sullivan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Konishi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The cochlear nucleus of the barn owl is composed of two anatomically distinct subnuclei, n. magnocellularis (the magnocellular nucleus) and n. angularis (the angular nucleus). In the magnocellular nucleus, neurons tend to respond at a particular phase of a stimulus sine wave. Phase locking was observed for frequencies up to 9.0 kHz. The intensity- spike count functions of magnocellular units are characterized by high rates of spontaneous activity, a narrow range of intensities over which spike counts changed from spontaneous to saturation levels, and a small increase in spike counts with intensity over that range. In the angular nucleus, neurons showed little or no tendency to respond at a certain sinusoidal phase, although some showed weak phase locking for frequencies below 3.5 kHz. Angular units typically had low spontaneous rates, large dynamic ranges, and large increases in spike counts with intensity, resulting in high saturation levels. The clear difference between the two nuclei in sensitivity to both phase and intensity and the reciprocity in response properties support the hypothesis that each nucleus is specialized to process one parameter (phase or intensity) and not the other.

Back to top

In this issue

The Journal of Neuroscience: 4 (7)
Journal of Neuroscience
Vol. 4, Issue 7
1 Jul 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl
WE Sullivan, M Konishi
Journal of Neuroscience 1 July 1984, 4 (7) 1787-1799; DOI: 10.1523/JNEUROSCI.04-07-01787.1984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl
WE Sullivan, M Konishi
Journal of Neuroscience 1 July 1984, 4 (7) 1787-1799; DOI: 10.1523/JNEUROSCI.04-07-01787.1984
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.