Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Sympathetic reinnervation of the pineal gland after postganglionic nerve lesion does not restore normal pineal function

CW Bowers, C Baldwin and RE Zigmond
Journal of Neuroscience 1 August 1984, 4 (8) 2010-2015; DOI: https://doi.org/10.1523/JNEUROSCI.04-08-02010.1984
CW Bowers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Baldwin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RE Zigmond
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The activity of the enzyme serotonin N-acetyltransferase (NAT) in the rat pineal gland exhibits a large circadian rhythm, with peak activity occurring at night. This rhythm is dependent on stimulation of the pineal gland by neurons whose cell bodies are in the superior cervical ganglia and whose axons reach the gland via the internal carotid nerves (ICNs). Two days after both ICN were cut, crushed, or frozen, nighttime NAT activity was decreased by 90%. The remaining low level of enzyme activity was not affected by decentralization of the superior cervical ganglia. Thus, this enzyme activity did not depend on the activity of neurons in these ganglia. Bilaterally lesioning the ICN also abolished the neuronal uptake of norepinephrine in the pineal, further indicating that the sympathetic innervation of the gland had been destroyed. Three months after crushing both ICNs, nighttime NAT activity was only 20% of control values. However, in these animals, bilateral decentralization of the superior cervical ganglion reduced this low level of NAT activity by 90%. Thus, NAT activity, although low, was again dependent on sympathetic nerve stimulation. In contrast to this rather small recovery of nocturnal NAT activity, the norepinephrine uptake capacity of the gland recovered to 60% of control values. A similar discrepancy between the extent of recovery of NAT activity and of norepinephrine uptake was observed when the ICNs were frozen rather than crushed. To determine to what extent the sympathetic nerves that had reinnervated the pineal gland in these lesioned animals were capable of regulating NAT activity, their cervical sympathetic trunks were stimulated electrically at 5 Hz for 3 hr during the daytime.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 4 (8)
Journal of Neuroscience
Vol. 4, Issue 8
1 Aug 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sympathetic reinnervation of the pineal gland after postganglionic nerve lesion does not restore normal pineal function
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Sympathetic reinnervation of the pineal gland after postganglionic nerve lesion does not restore normal pineal function
CW Bowers, C Baldwin, RE Zigmond
Journal of Neuroscience 1 August 1984, 4 (8) 2010-2015; DOI: 10.1523/JNEUROSCI.04-08-02010.1984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Sympathetic reinnervation of the pineal gland after postganglionic nerve lesion does not restore normal pineal function
CW Bowers, C Baldwin, RE Zigmond
Journal of Neuroscience 1 August 1984, 4 (8) 2010-2015; DOI: 10.1523/JNEUROSCI.04-08-02010.1984
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.