Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain

Simone Viganò and Manuela Piazza
Journal of Neuroscience 25 March 2020, 40 (13) 2727-2736; DOI: https://doi.org/10.1523/JNEUROSCI.1849-19.2020
Simone Viganò
Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto (Tn), Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Simone Viganò
Manuela Piazza
Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto (Tn), Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Manuela Piazza
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A recent proposal posits that humans might use the same neuronal machinery to support the representation of both spatial and nonspatial information, organizing concepts and memories using spatial codes. This view predicts that the same neuronal coding schemes characterizing navigation in the physical space (tuned to distance and direction) should underlie navigation of abstract semantic spaces, even if they are categorical and labeled by symbols. We constructed an artificial semantic environment by parsing a bidimensional audiovisual object space into four labeled categories. Before and after a nonspatial symbolic categorization training, 25 adults (15 females) were presented with pseudorandom sequences of objects and words during a functional MRI session. We reasoned that subsequent presentations of stimuli (either objects or words) referring to different categories implied implicit movements in the novel semantic space, and that such movements subtended specific distances and directions. Using whole-brain fMRI adaptation and searchlight model-based representational similarity analysis, we found evidence of both distance-based and direction-based responses in brain regions typically involved in spatial navigation: the medial prefrontal cortex and the right entorhinal cortex (EHC). After training, both regions encoded the distances between concepts, making it possible to recover a faithful bidimensional representation of the semantic space directly from their multivariate activity patterns, whereas the right EHC also exhibited a periodic modulation as a function of traveled direction. Our results indicate that the brain regions and coding schemes supporting relations and movements between spatial locations in mammals are “recycled” in humans to represent a bidimensional multisensory conceptual space during a symbolic categorization task.

SIGNIFICANCE STATEMENT The hippocampal formation and the medial prefrontal cortex of mammals represent the surrounding physical space by encoding distances and directions between locations. Recent works suggested that humans use the same neural machinery to organize their memories as points of an internal map of experiences. We asked whether the same brain regions and neural codes supporting spatial navigation are recruited when humans use language to organize their knowledge of the world in categorical semantic representations. Using fMRI, we show that the medial prefrontal cortex and the entorhinal portion of the hippocampal formation represent the distances and the movement directions between concepts of a novel audiovisual semantic space, and that it was possible to reconstruct, from neural data, their relationships in memory.

  • Concepts
  • entorhinal cortex
  • navigation
  • Semantic
  • ventro-medial prefrontal cortex
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 40 (13)
Journal of Neuroscience
Vol. 40, Issue 13
25 Mar 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain
Simone Viganò, Manuela Piazza
Journal of Neuroscience 25 March 2020, 40 (13) 2727-2736; DOI: 10.1523/JNEUROSCI.1849-19.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain
Simone Viganò, Manuela Piazza
Journal of Neuroscience 25 March 2020, 40 (13) 2727-2736; DOI: 10.1523/JNEUROSCI.1849-19.2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • concepts
  • entorhinal cortex
  • navigation
  • semantic
  • ventro-medial prefrontal cortex

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Common neural mechanisms control attention and working memory
  • Beta bursting in the retrosplenial cortex is a neurophysiological correlate of environmental novelty which is disrupted in a mouse model of Alzheimer’s disease
  • Dynamics and mechanisms of contrast-dependent modulation of spatial-frequency tuning in the early visual cortex
Show more Research Articles

Behavioral/Cognitive

  • Common neural mechanisms control attention and working memory
  • Beta bursting in the retrosplenial cortex is a neurophysiological correlate of environmental novelty which is disrupted in a mouse model of Alzheimer’s disease
  • Transfer of Tactile Learning from Trained to Untrained Body Parts Supported by Cortical Coactivation in Primary Somatosensory Cortex
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.