Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Neural Mechanisms of Attentional Control for Objects: Decoding EEG Alpha When Anticipating Faces, Scenes,and Tools

Sean Noah, Travis Powell, Natalia Khodayari, Diana Olivan, Mingzhou Ding and George R. Mangun
Journal of Neuroscience 17 June 2020, 40 (25) 4913-4924; https://doi.org/10.1523/JNEUROSCI.2685-19.2020
Sean Noah
1Department of Psychology, University of California, Davis, Davis, California 95616
2Center for Mind and Brain, University of California, Davis, Davis, California 95618
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sean Noah
Travis Powell
2Center for Mind and Brain, University of California, Davis, Davis, California 95618
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalia Khodayari
2Center for Mind and Brain, University of California, Davis, Davis, California 95618
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Diana Olivan
2Center for Mind and Brain, University of California, Davis, Davis, California 95618
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mingzhou Ding
3J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George R. Mangun
1Department of Psychology, University of California, Davis, Davis, California 95616
2Center for Mind and Brain, University of California, Davis, Davis, California 95618
4Department of Neurology, University of California, Davis, Sacramento, California 95817
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Attentional selection mechanisms in visual cortex involve changes in oscillatory activity in the EEG alpha band (8–12 Hz), with decreased alpha indicating focal cortical enhancement and increased alpha indicating suppression. This has been observed for spatial selective attention and attention to stimulus features such as color versus motion. We investigated whether attention to objects involves similar alpha-mediated changes in focal cortical excitability. In experiment 1, 20 volunteers (8 males; 12 females) were cued (80% predictive) on a trial-by-trial basis to different objects (faces, scenes, or tools). Support vector machine decoding of alpha power patterns revealed that late (>500 ms latency) in the cue-to-target foreperiod, only EEG alpha differed with the to-be-attended object category. In experiment 2, to eliminate the possibility that decoding of the physical features of cues led to our results, 25 participants (9 males; 16 females) performed a similar task where cues were nonpredictive of the object category. Alpha decoding was now only significant in the early (<200 ms) foreperiod. In experiment 3, to eliminate the possibility that task set differences between the different object categories led to our experiment 1 results, 12 participants (5 males; 7 females) performed a predictive cuing task where the discrimination task for different objects was identical across object categories. The results replicated experiment 1. Together, these findings support the hypothesis that the neural mechanisms of visual selective attention involve focal cortical changes in alpha power not only for simple spatial and feature attention, but also for high-level object attention in humans.

SIGNIFICANCE STATEMENT Attention is the cognitive function that enables relevant information to be selected from sensory inputs so it can be processed in the support of goal-directed behavior. Visual attention is widely studied, yet the neural mechanisms underlying the selection of visual information remain unclear. Oscillatory EEG activity in the alpha range (8–12 Hz) of neural populations receptive to target visual stimuli may be part of the mechanism, because alpha is thought to reflect focal neural excitability. Here, we show that alpha-band activity, as measured by scalp EEG from human participants, varies with the specific category of object selected by attention. This finding supports the hypothesis that alpha-band activity is a fundamental component of the neural mechanisms of attention.

  • alpha
  • attention
  • decoding
  • EEG
  • objects
  • vision
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 40 (25)
Journal of Neuroscience
Vol. 40, Issue 25
17 Jun 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neural Mechanisms of Attentional Control for Objects: Decoding EEG Alpha When Anticipating Faces, Scenes,and Tools
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Neural Mechanisms of Attentional Control for Objects: Decoding EEG Alpha When Anticipating Faces, Scenes,and Tools
Sean Noah, Travis Powell, Natalia Khodayari, Diana Olivan, Mingzhou Ding, George R. Mangun
Journal of Neuroscience 17 June 2020, 40 (25) 4913-4924; DOI: 10.1523/JNEUROSCI.2685-19.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neural Mechanisms of Attentional Control for Objects: Decoding EEG Alpha When Anticipating Faces, Scenes,and Tools
Sean Noah, Travis Powell, Natalia Khodayari, Diana Olivan, Mingzhou Ding, George R. Mangun
Journal of Neuroscience 17 June 2020, 40 (25) 4913-4924; DOI: 10.1523/JNEUROSCI.2685-19.2020
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • alpha
  • attention
  • decoding
  • EEG
  • objects
  • vision

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • The Neurobiology of Cognitive Fatigue and Its Influence on Effort-Based Choice
  • Zooming in and out: Selective attention modulates color signals in early visual cortex for narrow and broad ranges of task-relevant features
  • Gestational Chlorpyrifos Exposure Imparts Lasting Alterations to the Rat Somatosensory Cortex
Show more Research Articles

Behavioral/Cognitive

  • Zooming in and out: Selective attention modulates color signals in early visual cortex for narrow and broad ranges of task-relevant features
  • Target selection signals causally influence human perceptual decision making
  • The molecular substrates of second-order conditioned fear in the basolateral amygdala complex
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.