Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish

Matasaburo Fukutomi and Bruce A. Carlson
Journal of Neuroscience 12 August 2020, 40 (33) 6345-6356; DOI: https://doi.org/10.1523/JNEUROSCI.0875-20.2020
Matasaburo Fukutomi
Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matasaburo Fukutomi
Bruce A. Carlson
Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bruce A. Carlson
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Communication signal diversification is a driving force in the evolution of sensory and motor systems. However, little is known about the evolution of sensorimotor integration. Mormyrid fishes generate stereotyped electric pulses (electric organ discharge [EOD]) for communication and active sensing. The EOD has diversified extensively, especially in duration, which varies across species from 0.1 to >10 ms. In the electrosensory hindbrain, a corollary discharge that signals the timing of EOD production provides brief, precisely timed inhibition that effectively blocks responses to self-generated EODs. However, corollary discharge inhibition has only been studied in a few species, all with short-duration EODs. Here, we asked how corollary discharge inhibition has coevolved with the diversification of EOD duration. We addressed this question by comparing 7 mormyrid species (both sexes) having varied EOD duration. For each individual fish, we measured EOD duration and then measured corollary discharge inhibition by recording evoked potentials from midbrain electrosensory nuclei. We found that delays in corollary discharge inhibition onset were strongly correlated with EOD duration as well as delay to the first peak of the EOD. In addition, we showed that electrosensory receptors respond to self-generated EODs with spikes occurring in a narrow time window immediately following the first peak of the EOD. Direct comparison of time courses between the EOD and corollary discharge inhibition revealed that the inhibition overlaps the first peak of the EOD. Our results suggest that internal delays have shifted the timing of corollary discharge inhibition to optimally block responses to self-generated signals.

SIGNIFICANCE STATEMENT Corollary discharges are internal copies of motor commands that are essential for brain function. For example, corollary discharge allows an animal to distinguish self-generated from external stimuli. Despite widespread diversity in behavior and its motor control, we know little about the evolution of corollary discharges. Mormyrid fishes generate stereotyped electric pulses used for communication and active sensing. In the electrosensory pathway that processes communication signals, a corollary discharge inhibits sensory responses to self-generated signals. We found that fish with long-duration pulses have delayed corollary discharge inhibition, and that this time-shifted corollary discharge optimally blocks electrosensory responses to the fish's own signal. Our study provides the first evidence for evolutionary change in sensorimotor integration related to diversification of communication signals.

  • animal communication
  • electrosensory system
  • evolution
  • sensorimotor integration
  • sensory coding

SfN exclusive license.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 40 (33)
Journal of Neuroscience
Vol. 40, Issue 33
12 Aug 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish
Matasaburo Fukutomi, Bruce A. Carlson
Journal of Neuroscience 12 August 2020, 40 (33) 6345-6356; DOI: 10.1523/JNEUROSCI.0875-20.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish
Matasaburo Fukutomi, Bruce A. Carlson
Journal of Neuroscience 12 August 2020, 40 (33) 6345-6356; DOI: 10.1523/JNEUROSCI.0875-20.2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • animal communication
  • electrosensory system
  • evolution
  • sensorimotor integration
  • sensory coding

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Common neural mechanisms control attention and working memory
  • Beta bursting in the retrosplenial cortex is a neurophysiological correlate of environmental novelty which is disrupted in a mouse model of Alzheimer’s disease
  • Dynamics and mechanisms of contrast-dependent modulation of spatial-frequency tuning in the early visual cortex
Show more Research Articles

Systems/Circuits

  • Dynamics and mechanisms of contrast-dependent modulation of spatial-frequency tuning in the early visual cortex
  • Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment
  • Extra-glomerular excitation of rat olfactory bulb mitral cells by depolarizing GABAergic synaptic input
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.