Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Neurobiology of Disease

NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE

Zhixin Lei, Yuan Yue, Sarrabeth Stone, Shuangchan Wu and Wensheng Lin
Journal of Neuroscience 12 August 2020, 40 (33) 6444-6456; DOI: https://doi.org/10.1523/JNEUROSCI.1156-20.2020
Zhixin Lei
1Department of Neuroscience
2Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuan Yue
1Department of Neuroscience
2Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarrabeth Stone
1Department of Neuroscience
2Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shuangchan Wu
1Department of Neuroscience
2Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wensheng Lin
1Department of Neuroscience
2Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wensheng Lin
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies demonstrate that activation of pancreatic ER kinase (PERK) protects oligodendrocytes against inflammation in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Interestingly, data indicate that the cytoprotective effects of PERK activation on oligodendrocytes during EAE are not mediated by activating transcription factor 4 (ATF4) but are accompanied by activation of nuclear factor κB (NF-κB). NF-κB plays a critical role in MS and EAE; however, the effects of NF-κB activation on oligodendrocytes in these diseases remain elusive. Herein, we generated a mouse model that allow for activation of NF-κB specifically in oligodendrocytes and found that enhanced NF-κB activation in oligodendrocytes had a minimal effect on their viability and function under normal conditions (both male and female mice). Interestingly, we found that enhanced NF-κB activation in oligodendrocytes attenuated EAE disease severity and ameliorated EAE-induced oligodendrocyte loss, demyelination, and axon degeneration, without affecting inflammation (female mice). Moreover, we showed that the detrimental effects of PERK inactivation in oligodendrocytes in EAE were accompanied by impaired NF-κB activation in oligodendrocytes, and were completely rescued by enhanced NF-κB activation in oligodendrocytes (female mice). These findings suggest that NF-κB activation accounts for the cytoprotective effects of PERK activation on oligodendrocytes in MS and EAE.

SIGNIFICANCE STATEMENT Nuclear factor κB (NF-κB) is activated in oligodendrocytes in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE); however, the role of NF-κB activation in oligodendrocytes in MS and EAE remains elusive. Herein, we generated a mouse model that allows for activation of NF-κB selectively in oligodendrocytes and demonstrated that NF-κB activation prevented oligodendrocyte death and myelin damage in the EAE model. We further demonstrated that NF-κB activation contributed to the protective effects of pancreatic ER kinase (PERK) activation on oligodendrocytes in the EAE model. As such, this work will facilitate the development of new treatments that enhance oligodendrocyte survival in MS patients by targeting the PERK-NF-κB pathway.

  • A20
  • demyelination
  • EAE
  • NF-κB
  • oligodendrocyte
  • PERK

SfN exclusive license.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 40 (33)
Journal of Neuroscience
Vol. 40, Issue 33
12 Aug 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE
Zhixin Lei, Yuan Yue, Sarrabeth Stone, Shuangchan Wu, Wensheng Lin
Journal of Neuroscience 12 August 2020, 40 (33) 6444-6456; DOI: 10.1523/JNEUROSCI.1156-20.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE
Zhixin Lei, Yuan Yue, Sarrabeth Stone, Shuangchan Wu, Wensheng Lin
Journal of Neuroscience 12 August 2020, 40 (33) 6444-6456; DOI: 10.1523/JNEUROSCI.1156-20.2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • A20
  • demyelination
  • EAE
  • NF-κB
  • oligodendrocyte
  • PERK

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Glutamatergic neurons in the preoptic hypothalamus promote wakefulness, destabilize NREM sleep, suppress REM sleep, and regulate cortical dynamics
  • Coordinated postnatal maturation of striatal cholinergic interneurons and dopamine release dynamics in mice
  • Synaptophysin Regulates Fusion Pores and Exocytosis Mode in Chromaffin Cells
Show more Research Articles

Neurobiology of Disease

  • The Sustained Antidepressant Effects of Ketamine are Independent of the Lateral Habenula
  • Striatal Afferent BDNF Is Disrupted by Synucleinopathy and Partially Restored by STN DBS
  • A New Mouse Model Related to SCA14 Carrying a Pseudosubstrate Domain Mutation in PKCγ Shows Perturbed Purkinje Cell Maturation and Ataxic Motor Behavior
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.