Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Predicting the Partition of Behavioral Variability in Speed Perception with Naturalistic Stimuli

Benjamin M. Chin and Johannes Burge
Journal of Neuroscience 22 January 2020, 40 (4) 864-879; DOI: https://doi.org/10.1523/JNEUROSCI.1904-19.2019
Benjamin M. Chin
1Department of Psychology,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Benjamin M. Chin
Johannes Burge
1Department of Psychology,
2Neuroscience Graduate Group, and
3Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Johannes Burge
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A core goal of visual neuroscience is to predict human perceptual performance from natural signals. Performance in any natural task can be limited by at least three sources of uncertainty: stimulus variability, internal noise, and suboptimal computations. Determining the relative importance of these factors has been a focus of interest for decades but requires methods for predicting the fundamental limits imposed by stimulus variability on sensory-perceptual precision. Most successes have been limited to simple stimuli and simple tasks. But perception science ultimately aims to understand how vision works with natural stimuli. Successes in this domain have proven elusive. Here, we develop a model of humans based on an image-computable (images in, estimates out) Bayesian ideal observer. Given biological constraints, the ideal optimally uses the statistics relating local intensity patterns in moving images to speed, specifying the fundamental limits imposed by natural stimuli. Next, we propose a theoretical link between two key decision-theoretic quantities that suggests how to experimentally disentangle the impacts of internal noise and deterministic suboptimal computations. In several interlocking discrimination experiments with three male observers, we confirm this link and determine the quantitative impact of each candidate performance-limiting factor. Human performance is near-exclusively limited by natural stimulus variability and internal noise, and humans use near-optimal computations to estimate speed from naturalistic image movies. The findings indicate that the partition of behavioral variability can be predicted from a principled analysis of natural images and scenes. The approach should be extendable to studies of neural variability with natural signals.

SIGNIFICANCE STATEMENT Accurate estimation of speed is critical for determining motion in the environment, but humans cannot perform this task without error. Different objects moving at the same speed cast different images on the eyes. This stimulus variability imposes fundamental external limits on the human ability to estimate speed. Predicting these limits has proven difficult. Here, by analyzing natural signals, we predict the quantitative impact of natural stimulus variability on human performance given biological constraints. With integrated experiments, we compare its impact to well-studied performance-limiting factors internal to the visual system. The results suggest that the deterministic computations humans perform are near optimal, and that behavioral responses to natural stimuli can be studied with the rigor and interpretability defining work with simpler stimuli.

  • decision variable correlation
  • efficiency
  • motion energy
  • natural scene statistics
  • psychophysics
  • signal detection theory
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 40 (4)
Journal of Neuroscience
Vol. 40, Issue 4
22 Jan 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Predicting the Partition of Behavioral Variability in Speed Perception with Naturalistic Stimuli
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Predicting the Partition of Behavioral Variability in Speed Perception with Naturalistic Stimuli
Benjamin M. Chin, Johannes Burge
Journal of Neuroscience 22 January 2020, 40 (4) 864-879; DOI: 10.1523/JNEUROSCI.1904-19.2019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Predicting the Partition of Behavioral Variability in Speed Perception with Naturalistic Stimuli
Benjamin M. Chin, Johannes Burge
Journal of Neuroscience 22 January 2020, 40 (4) 864-879; DOI: 10.1523/JNEUROSCI.1904-19.2019
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • decision variable correlation
  • efficiency
  • motion energy
  • natural scene statistics
  • psychophysics
  • signal detection theory

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Dopaminergic Modulation of Dynamic Emotion Perception
  • Anterior Cingulate Cortex Signals the Need to Control Intrusive Thoughts during Motivated Forgetting
  • A Direct Comparison of Theta Power and Frequency to Speed and Acceleration
Show more Research Articles

Behavioral/Cognitive

  • Dopaminergic Modulation of Dynamic Emotion Perception
  • Anterior Cingulate Cortex Signals the Need to Control Intrusive Thoughts during Motivated Forgetting
  • Prediction Error Determines Whether NMDA Receptors in the Basolateral Amygdala Complex Are Involved in Pavlovian Fear Conditioning
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.