Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Featured ArticleResearch Articles, Neurobiology of Disease

Alcohol Increases Exosome Release from Microglia to Promote Complement C1q-Induced Cellular Death of Proopiomelanocortin Neurons in the Hypothalamus in a Rat Model of Fetal Alcohol Spectrum Disorders

Sayani Mukherjee, Miguel A. Cabrera, Nadka I. Boyadjieva, Gregory Berger, Bénédicte Rousseau and Dipak K. Sarkar
Journal of Neuroscience 7 October 2020, 40 (41) 7965-7979; DOI: https://doi.org/10.1523/JNEUROSCI.0284-20.2020
Sayani Mukherjee
1The Endocrine Program, Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miguel A. Cabrera
1The Endocrine Program, Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
2Endocrinology and Animal Biosciences Graduate Program, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nadka I. Boyadjieva
1The Endocrine Program, Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory Berger
1The Endocrine Program, Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
2Endocrinology and Animal Biosciences Graduate Program, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bénédicte Rousseau
1The Endocrine Program, Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dipak K. Sarkar
1The Endocrine Program, Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901-1573
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Microglia, a type of CNS immune cell, have been shown to contribute to ethanol-activated neuronal death of the stress regulatory proopiomelanocortin (POMC) neuron-producing β-endorphin peptides in the hypothalamus in a postnatal rat model of fetal alcohol spectrum disorders. We determined whether the microglial extracellular vesicle exosome is involved in the ethanol-induced neuronal death of the β-endorphin neuron. Extracellular vesicles were prepared from hypothalamic tissues collected from postnatal rats (both males and females) fed daily with 2.5 mg/kg ethanol or control milk formula for 5 d or from hypothalamic microglia cells obtained from postnatal rats, grown in cultures for several days, and then challenged with ethanol or vehicle for 24 h. Nanoparticle tracking analysis and transmission electron microscopy indicated that these vesicles had the size range and shape of exosomes. Ethanol treatments increased the number and the β-endorphin neuronal killing activity of microglial exosomes both in vivo and in vitro. Proteomics analyses of exosomes of cultured microglial cells identified a large number of proteins, including various complements, which were elevated following ethanol treatment. Proteomics data involving complements were reconfirmed using quantitative protein assays. Ethanol treatments also increased deposition of the complement protein C1q in β-endorphin neuronal cells in both in vitro and in vivo systems. Recombinant C1q protein increased while C1q blockers reduced ethanol-induced C3a/b, C4, and membrane attack complex/C5b9 formations; ROS production; and ultimately cellular death of β-endorphin neurons. These data suggest that the complement system involving C1q-C3-C4-membrane attack complex and ROS regulates exosome-mediated, ethanol-induced β-endorphin neuronal death.

SIGNIFICANCE STATEMENT Neurotoxic action of alcohol during the developmental period is recognized for its involvement in fetal alcohol spectrum disorders, but the lack of clear understanding of the mechanism of alcohol action has delayed the progress in therapeutic intervention of this disease. Proopiomelanocortin neurons known to regulate stress, energy homeostasis, and immune functions are reported to be killed by developmental alcohol exposure because of activation of microglial immune cells in the brain. While microglia are known to use extracellular vesicles to communicate with neurons for maintaining homeostasis, we show here that ethanol exposure during the developmental period hijacks this system to spread apoptotic factors, including complement protein C1q, to induce the membrane attack complex and reactive super-oxygen species for proopiomelanocortin neuronal killing.

  • apoptosis
  • complements
  • exosomes
  • fetal alcohol syndrome
  • microglia
  • proopiomelanocortin
View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 40 (41)
Journal of Neuroscience
Vol. 40, Issue 41
7 Oct 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Alcohol Increases Exosome Release from Microglia to Promote Complement C1q-Induced Cellular Death of Proopiomelanocortin Neurons in the Hypothalamus in a Rat Model of Fetal Alcohol Spectrum Disorders
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Alcohol Increases Exosome Release from Microglia to Promote Complement C1q-Induced Cellular Death of Proopiomelanocortin Neurons in the Hypothalamus in a Rat Model of Fetal Alcohol Spectrum Disorders
Sayani Mukherjee, Miguel A. Cabrera, Nadka I. Boyadjieva, Gregory Berger, Bénédicte Rousseau, Dipak K. Sarkar
Journal of Neuroscience 7 October 2020, 40 (41) 7965-7979; DOI: 10.1523/JNEUROSCI.0284-20.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Alcohol Increases Exosome Release from Microglia to Promote Complement C1q-Induced Cellular Death of Proopiomelanocortin Neurons in the Hypothalamus in a Rat Model of Fetal Alcohol Spectrum Disorders
Sayani Mukherjee, Miguel A. Cabrera, Nadka I. Boyadjieva, Gregory Berger, Bénédicte Rousseau, Dipak K. Sarkar
Journal of Neuroscience 7 October 2020, 40 (41) 7965-7979; DOI: 10.1523/JNEUROSCI.0284-20.2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • apoptosis
  • complements
  • exosomes
  • fetal alcohol syndrome
  • microglia
  • proopiomelanocortin

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Brief sensory deprivation triggers cell type-specific structural and functional plasticity in olfactory bulb neurons
  • Premotor Ramping of Thalamic Neuronal Activity Is Modulated by Nigral Inputs and Contributes to Control the Timing of Action Release
  • FFA and OFA Encode Distinct Types of Face Identity Information
Show more Research Articles

Neurobiology of Disease

  • Striatal Afferent BDNF Is Disrupted by Synucleinopathy and Partially Restored by STN DBS
  • A New Mouse Model Related to SCA14 Carrying a Pseudosubstrate Domain Mutation in PKCγ Shows Perturbed Purkinje Cell Maturation and Ataxic Motor Behavior
  • Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.