Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Featured ArticleResearch Articles, Cellular/Molecular

Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool

Juliana E. Shaw, Michaela B.C. Kilander, Yu-Chih Lin and Anthony J. Koleske
Journal of Neuroscience 7 April 2021, 41 (14) 3068-3081; DOI: https://doi.org/10.1523/JNEUROSCI.2472-20.2021
Juliana E. Shaw
1Departments of Molecular Biophysics and Biochemistry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Juliana E. Shaw
Michaela B.C. Kilander
4Program in Neuroscience, Hussman Institute for Autism, Baltimore, Maryland 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yu-Chih Lin
1Departments of Molecular Biophysics and Biochemistry
4Program in Neuroscience, Hussman Institute for Autism, Baltimore, Maryland 21201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yu-Chih Lin
Anthony J. Koleske
1Departments of Molecular Biophysics and Biochemistry
2Neuroscience
3Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anthony J. Koleske
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dendritic spines act as the receptive contacts at most excitatory synapses. Spines are enriched in a network of actin filaments comprised of two kinetically distinct pools. The majority of spine actin is highly dynamic and regulates spine size, structural plasticity, and postsynaptic density organization. The remainder of the spine actin network is more stable, but the function of this minor actin population is not well understood, as tools to study it have not been available. Previous work has shown that disruption of the Abl2/Arg nonreceptor tyrosine kinase in mice compromises spine stability and size. Here, using cultured hippocampal neurons pooled from both sexes of mice, we provide evidence that binding to cortactin tethers Abl2 in spines, where Abl2 and cortactin maintain the small pool of stable actin required for dendritic spine stability. Using fluorescence recovery after photobleaching of GFP-actin, we find that disruption of Abl2:cortactin interactions eliminates stable actin filaments in dendritic spines, significantly reducing spine density. A subset of spines remaining after Abl2 depletion retain their stable actin pool and undergo activity-dependent spine enlargement, associated with increased cortactin and GluN2B levels. Finally, tonic increases in synaptic activity rescue spine loss following Abl2 depletion by promoting cortactin enrichment in vulnerable spines. Together, our findings strongly suggest that Abl2:cortactin interactions promote spine stability by maintaining pools of stable actin filaments in spines.

SIGNIFICANCE STATEMENT Dendritic spines contain two kinetically distinct pools of actin. The more abundant, highly dynamic pool regulates spine shape, size, and plasticity. The function of the smaller, stable actin network is not well understood, as tools to study it have not been available. We demonstrate here that Abl2 and its substrate and interaction partner, cortactin, are essential to maintain the stable pool in spines. Depletion of the stable actin pool via disruption of Abl2 or cortactin, or interactions between the proteins, significantly reduces spine stability. We also provide evidence that tonic increases in synaptic activity promote spine stability via enrichment of cortactin in spines, suggesting that synaptic activity acts on the stable actin pool to stabilize dendritic spines.

  • Abl2
  • actin
  • cortactin
  • dendritic spine stability
  • FRAP
  • stable actin

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 41 (14)
Journal of Neuroscience
Vol. 41, Issue 14
7 Apr 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool
Juliana E. Shaw, Michaela B.C. Kilander, Yu-Chih Lin, Anthony J. Koleske
Journal of Neuroscience 7 April 2021, 41 (14) 3068-3081; DOI: 10.1523/JNEUROSCI.2472-20.2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool
Juliana E. Shaw, Michaela B.C. Kilander, Yu-Chih Lin, Anthony J. Koleske
Journal of Neuroscience 7 April 2021, 41 (14) 3068-3081; DOI: 10.1523/JNEUROSCI.2472-20.2021
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • Abl2
  • actin
  • cortactin
  • dendritic spine stability
  • FRAP
  • stable actin

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Modular network between postrhinal visual cortex, amygdala and entorhinal cortex
  • High-level representations in human occipito-temporal cortex are indexed by distal connectivity
  • Altered heterosynaptic plasticity impairs visual discrimination learning in adenosine A1 receptor knockout mice
Show more Research Articles

Cellular/Molecular

  • Er81 transcription factor Fine-tunes Striatal Cholinergic Interneuron Activity and Drives Habit Formation
  • Total number and ratio of GABAergic neuron types in the mouse lateral and basal amygdala
  • Increased excitatory synaptic transmission associated with adult seizure vulnerability induced by early life inflammation in mice
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.