Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Research Articles, Cellular/Molecular

Synaptophysin Regulates Fusion Pores and Exocytosis Mode in Chromaffin Cells

Che-Wei Chang, Yu-Tien Hsiao and Meyer B. Jackson
Journal of Neuroscience 21 April 2021, 41 (16) 3563-3578; https://doi.org/10.1523/JNEUROSCI.2833-20.2021
Che-Wei Chang
1J. David Gladstone Institutes, University of California, San Francisco, California 94158
3Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yu-Tien Hsiao
2Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Meyer B. Jackson
2Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705
3Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Meyer B. Jackson
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Synaptophysin (syp) is a major integral membrane protein of secretory vesicles. Previous work has demonstrated functions for syp in synaptic vesicle cycling, endocytosis, and synaptic plasticity, but the role of syp in the process of membrane fusion during Ca2+-triggered exocytosis remains poorly understood. Furthermore, although syp resides on both large dense-core and small synaptic vesicles, its role in dense-core vesicle function has received less attention compared with synaptic vesicle function. To explore the role of syp in membrane fusion and dense-core vesicle function, we used amperometry to measure catecholamine release from single vesicles in male and female mouse chromaffin cells with altered levels of syp and the related tetraspanner protein synaptogyrin (syg). Knocking out syp slightly reduced the frequency of vesicle fusion events below wild-type (WT) levels, but knocking out both syp and syg reduced the frequency 2-fold. Knocking out both proteins stabilized initial fusion pores, promoted fusion pore closure (kiss-and-run), and reduced late-stage fusion pore expansion. Introduction of a syp construct lacking its C-terminal dynamin-binding domain in syp knock-outs (KOs) increased the duration and fraction of kiss-and-run events, increased total catecholamine release per event, and reduced late-stage fusion pore expansion. These results demonstrated that syp and syg regulate dense-core vesicle function at multiple stages to initiate fusion, control the choice of mode between full-fusion and kiss-and-run, and influence the dynamics of both initial and late-stage fusion pores. The transmembrane domain (TMD) influences small initial fusion pores, and the C-terminal domain influences large late-stage fusion pores, possibly through an interaction with dynamin.

SIGNIFICANCE STATEMENT The secretory vesicle protein synaptophysin (syp) is known to function in synaptic vesicle cycling, but its roles in dense-core vesicle functions, and in controlling membrane fusion during Ca2+-triggered exocytosis remain unclear. The present study used amperometry recording of catecholamine release from endocrine cells to assess the impact of syp and related proteins on membrane fusion. A detailed analysis of amperometric spikes arising from the exocytosis of single vesicles showed that these proteins influence fusion pores at multiple stages and control the choice between kiss-and-run and full-fusion. Experiments with a syp construct lacking its C terminus indicated that the transmembrane domain (TMD) influences the initial fusion pore, while the C-terminal domain influences later stages after fusion pore expansion.

  • chromaffin cells
  • dense-core vesicle
  • exocytosis
  • fusion pores
  • secretion
  • synaptophysin

SfN exclusive license.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 41 (16)
Journal of Neuroscience
Vol. 41, Issue 16
21 Apr 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Synaptophysin Regulates Fusion Pores and Exocytosis Mode in Chromaffin Cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Synaptophysin Regulates Fusion Pores and Exocytosis Mode in Chromaffin Cells
Che-Wei Chang, Yu-Tien Hsiao, Meyer B. Jackson
Journal of Neuroscience 21 April 2021, 41 (16) 3563-3578; DOI: 10.1523/JNEUROSCI.2833-20.2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Synaptophysin Regulates Fusion Pores and Exocytosis Mode in Chromaffin Cells
Che-Wei Chang, Yu-Tien Hsiao, Meyer B. Jackson
Journal of Neuroscience 21 April 2021, 41 (16) 3563-3578; DOI: 10.1523/JNEUROSCI.2833-20.2021
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • chromaffin cells
  • dense-core vesicle
  • exocytosis
  • fusion pores
  • secretion
  • synaptophysin

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • CaMKIIβ-mediated phosphorylation enhances protein stability of spastin to promote neurite outgrowth
  • Vocal error monitoring in the primate auditory cortex
  • EEG Correlates of Active Removal from Working Memory
Show more Research Articles

Cellular/Molecular

  • CaMKIIβ-mediated phosphorylation enhances protein stability of spastin to promote neurite outgrowth
  • Bmal1 Modulates Striatal cAMP Signaling and Motor Learning
  • Activation of dopamine D1 receptors at the axon initial segment-like process of retinal AII amacrine cells modulates action potential firing
Show more Cellular/Molecular
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.