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Delays to Reward Delivery Enhance the Preference for an
Initially Less Desirable Option: Role for the Basolateral
Amygdala and Retrosplenial Cortex
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Temporal costs influence reward-based decisions. This is commonly studied in temporal discounting tasks that involve choos-
ing between cues signaling an imminent reward option or a delayed reward option. However, it is unclear whether the tem-
poral delay before a reward can alter the value of that option. To address this, we identified the relative preference between
different flavored rewards during a free-feeding test using male and female rats. Animals underwent training where either
the initial preferred or the initial less preferred reward was delivered noncontingently. By manipulating the intertrial interval
during training sessions, we could determine whether temporal delays impact reward preference in a subsequent free-feeding
test. Rats maintained their initial preference if the same delays were used across all training sessions. When the initial less
preferred option was delivered after short delays (high reward rate) and the initial preferred option was delivered after long
delays (low reward rate), rats expectedly increased their preference for the initial less desirable option. However, rats also
increased their preference for the initial less desirable option under the opposite training contingencies: delivering the initial
less preferred reward after long delays and the initial preferred reward after short delays. These data suggest that sunk tem-
poral costs enhance the preference for a less desirable reward option. Pharmacological and lesion experiments were per-
formed to identify the neural systems responsible for this behavioral phenomenon. Our findings demonstrate the basolateral
amygdala and retrosplenial cortex are required for temporal delays to enhance the preference for an initially less desirable
reward.
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Significance Statement

The goal of this study was to determine how temporal delays influence reward preference. We demonstrate that delivering an
initially less desirable reward after long delays subsequently increases the consumption and preference for that reward.
Furthermore, we identified the basolateral amygdala and the retrosplenial cortex as essential nuclei for mediating the change
in reward preference elicited by sunk temporal costs.

Introduction
The temporal costs associated with earning a reward influences
reward-based decisions across species (Phillips et al., 2007;
Rangel et al., 2008). In temporal discounting tasks, subjects will
reliably choose a small reward delivered after a short delay over a
large reward delivered after a long delay (Logan, 1965; Ainslie,
1974; Rodriguez and Logue, 1988; Evenden and Ryan, 1996;

Richards et al., 1997; Green and Myerson, 2004; Vanderveldt et
al., 2016). These behavioral findings suggest the estimation of
reward value is negatively influenced by the anticipated temporal
costs associated with earning the reward (Green and Myerson,
2004; Vanderveldt et al., 2016). However, temporal discounting
tasks typically involve a binary choice, where choosing one
option comes at the expense of the alternative outcome (Logan,
1965; Ainslie, 1974; Rodriguez and Logue, 1988; Evenden and
Ryan, 1996; Richards et al., 1997). As such, this approach cannot
directly determine whether temporal costs impact the value of
the chosen option and/or alter the value of the alternative option.

Here, we developed a rodent task to determine how temporal
costs before a reward delivery subsequently alters reward value
and reward preference. We first identified the relative preference
between different flavored food rewards in a free-feeding test.
Next, rats underwent training where the initial preferred and less
preferred rewards were delivered noncontingently in separate
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training sessions. One food reward flavor was always delivered
after a short delay while the other food pellet flavor was always
delivered after a long delay. In this manner, we could determine
how temporal costs imposed during training subsequently
impacts reward value (consumption) and reward preference in a
second free-feeding test.

Based off temporal discounting studies, one might expect
that a reward delivered after a short delay will have a greater
value because of the higher rate of reward experienced dur-
ing training sessions (Khodadadi et al., 2014; Peterson et al.,
2015; Vanderveldt et al., 2016). In support, we found that
rats exhibited a greater preference for the initial less desira-
ble option when this reward was delivered after short delays
and the initial preferred reward was delivered after long delays.
However, rats trained using the opposite contingencies did not ex-
hibit a greater preference for the initial preferred reward. Rather,
rats increased their consumption and preference for the initial less
desirable reward, which suggests that sunk temporal costs can
enhance the value of an originally less preferred option (Clement
et al., 2000; Friedrich and Zentall, 2004; Alessandri et al., 2008).
Pharmacological manipulations and lesion experiments were
performed to identify the neural systems responsible for this be-
havioral phenomenon. We focused on neural systems involved
with timing, reward valuation and learning, including the dopa-
mine system (Wise, 2004; Berke, 2018), the orbitofrontal cortex
(OFC) (Rolls, 2004; Izquierdo, 2017), the basolateral amygdala
(BLA) (Wassum and Izquierdo, 2015), and the retrosplenial cor-
tex (RSC) (Todd et al., 2015, 2019). Our data illustrate that the
change in reward preference was unaffected by systemic dopa-
mine receptor antagonism or OFC lesions. In contrast, lesions of
the BLA or the RSC prevented the enhanced consumption and
preference for the initial less desirable reward following long
delay training sessions. These findings demonstrate that both the
BLA and RSC participate in how temporal costs alter reward
value and reward preference.

Materials and Methods
Subjects and surgery. All procedures were approved by the

Institutional Animal Care and Use Committee at the University of Texas
at San Antonio. Male and female Sprague Dawley rats (n=105; 88 male,
17 female; Charles River) weighing 300–350 g were pair-housed on ar-
rival and given ad libitum access to water and chow and maintained on a
12 h light/dark cycle.

All surgeries were performed under isoflurane anesthesia, and drug
infusions were delivered at a rate of 0.1ml/min. Surgical coordinates
and injection volumes were based on prior research (Maren, 1999;
McDannald et al., 2011; Powell et al., 2017). OFC-lesioned rats received
injections of NMDA (12.5mg/ml in saline vehicle; Tocris Bioscience) at
the following locations (relative to bregma): 3.0 mm AP,6 3.2 mm ML,
�5.2 mm DV (0.05ml); 3.0 mm AP, 6 4.2 mm ML, �5.2 mm DV
(0.1ml); 4.0 mm AP, 6 2.2 mm ML, �3.8 mm DV (0.1ml); 4.0 mm AP,
6 3.7 mm ML, �3.8 mm DV (0.1ml). BLA-lesioned rats received injec-
tions of NMDA (20mg/ml) at the following locations: �3.3 mm AP,
6 4.6 mm ML, �8.6 mm DV (0.2ml); �3.3 mm AP, 6 4.6 mm ML,
�8.4 mm DV (0.1ml). RSC-lesioned rats received injections of NMDA
(20mg/ml) at the following locations: �1.6 mm AP,6 0.5 mmML, �1.3
mm DV (0.26ml); �2.8 mm AP, 6 0.5 mm ML, �1.3 mm DV (0.26ml);
�4.0 mm AP, 6 0.5 mm ML, �1.3 mm DV (0.26ml); �5.3 mm AP, 6
0.5 mmML,�2.0 mm DV (0.26ml). All sham surgeries involved lowering
the injector to the respective injection sites. Animals recovered for
.1week following surgery before beginning training.

Training. Rats were placed and maintained on mild food restriction
(;15 g/d of standard laboratory chow) to target 90% free-feeding
weight, allowing for an increase of 1.5% per week. Behavioral sessions
were performed in chambers that had grid floors, a house light, and two

food trays on a single wall. In free-feeding sessions, plastic barriers were
placed over the food trays. Additionally, a plastic insert was placed over
the grid floors that contained two fixed cups in which the food pellets
were placed. Experimental 45mg sucrose pellets that had an identical
nutritional profile but differed in flavor (chocolate flavor #F0025 and ba-
nana flavor #F0024; Bio-Serv) were placed in their home cages to mini-
mize neophobia. Rats first underwent a free-feeding session (10 min) in
which a single food pellet flavor was offered (6.5 g total). On the follow-
ing day, rats underwent a second free-feeding session in which the alter-
nate flavor was offered (ordering counterbalanced between animals). For
the free-feeding preference test, rats were allowed 10min to consume
both chocolate and banana food pellets that were freely available in cups
affixed to the floor. To ensure an ample supply of food, we provided 13 g
of each flavor, which was 3 g higher than the maximal amount con-
sumed in pilot studies. We identified which reward flavor was the Initial
Preferred and the Initial Less Preferred based on the food consumed
during this preference test.

Rats next underwent training sessions (1/d) in which one of the
rewards was delivered for a total of 50 pellets per session. Food pellets
were delivered noncontingently and were not preceded by reward-pre-
dictive cues during training sessions. In Short Delay sessions, one of the
reward flavors was delivered after a 30 6 5 s intertrial interval (ITI). In
separate Long Delay sessions, the other reward flavor was delivered after
a 60 6 5 s ITI (Different Delay training). There were a total of 10 train-
ing sessions, which alternated between Long and Short Delay sessions
with the first session counterbalanced between animals. Rats underwent
a second free-feeding preference test following this training regimen. In
a control experiment, rats were trained as described above, except that a
45 6 5 s ITI was used for both the Initial Less Preferred and the Initial
Preferred reward training sessions to ensure that rats were in the boxes
for the same amount of total time as in the Different Delay training
groups. In dopamine receptor antagonist experiments, injections of flu-
penthixol (225mg/kg i.p., Tocris Bioscience) or saline were administered
1 h before training sessions, based on established research (Flagel et al.,
2011). Flupenthixol was not administered before the preference tests.

Data analysis. The latency to respond was calculated as the length of
time to make a head entry into the food port after a pellet was delivered.
The latency measurement was capped at 25 s (shortest possible trial du-
ration) to account for the rare occasion when a pellet was not retrieved
before the subsequent trial. Anticipatory head entries were measured as
the number of head entries into the food port during the 5 s preceding
the reward delivery. The preference ratio was calculated as the amount
consumed of the Initial Less Preferred reward relative to the total food
consumed during the free-feeding test. A linear regression analysis was
performed to determine how changes in food consumption related to
changes in reward preference. We performed statistical analyses using
GraphPad Prism 8. The effect of training on behavioral outcomes was
analyzed using a paired t test or a mixed-effects model fit (restricted
maximum likelihood method), repeated measures where appropriate,
followed by a post hoc Sidak’s test. The Geisser-Greenhouse correction
was applied to address unequal variances between groups. The signifi-
cance level was set to a = 0.05 for all tests.

Histology. Rats were intracardially perfused with 4% PFA, and brains
were removed and postfixed for at least 24 h. Brains were subsequently
placed in 15% and 30% sucrose solutions in PBS. Brains were then flash
frozen on dry ice, coronally sectioned, and stained with cresyl violet to
verify the location and spread of the surgical lesions.

Results
We developed a rodent task to examine how temporal costs sub-
sequently impact reward value and preference. After identifying
the relative preference between chocolate and banana flavored
food pellets, rats underwent training sessions in which one
reward was delivered after a Short Delay (306 5 s ITI) and the
other reward was delivered after a Long Delay (606 5 s ITI) in
separate sessions. We hypothesized that the higher rate of reward
in Short Delay sessions would subsequently enhance the
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preference for the reward delivered in those sessions. In the first
set of experiments, the Initial Less Preferred reward was deliv-
ered in Short Delay sessions and the Initial Preferred reward was
delivered in Long Delay sessions (Different Delay training; Fig.
1A). Rats increased anticipatory head entries into the food port
across training sessions, but there was no difference between
Short and Long Delay sessions (two-way mixed-effects analysis;
session effect: F(2.07,18.63) = 29.92, p, 0.0001; delay effect: F(1,9) =

0.01, p= 0.91; n=10; Fig. 1B; Table 1). Rats also decreased the
post-reward latency into the food port across training, with no
difference between session type (two-way mixed-effects analysis;
session effect: F(1.17,10.53) = 16.07, p= 0.002; delay effect: F(1,9) =
0.03, p= 0.87; Fig. 1C; Table 1). Although there were no behav-
ioral differences between Short and Long Delay sessions, this
training regimen increased the rats’ preference for the Initial
Less Preferred reward (paired t test: t(9) = 3.13, p= 0.01; Fig. 1D;

 

Figure 1. Increased preference for the Initial Less Preferred reward delivered after short delays. A, Training schematic for the Different Delay training sessions: Initial Less Preferred after short
delays. B, Anticipatory head entries into the food port during the 5 s before reward delivery for the Initial Less Preferred (Short Delay) and Initial Preferred (Long Delay) training sessions. C,
Latency to make a head entry into the food port after a reward is delivered for the Initial Less Preferred and Initial Preferred training sessions. D, Preference ratio plotted as the amount of the
Initial Less Preferred food consumed out of the total food consumed during preference tests. E, Reward consumption for each flavor during the preference tests. F, Training schematic for the
Same Delay training sessions. G, Anticipatory head entries into the food port during the 5 s before reward delivery for the Initial Less Preferred (Medium Delay) and Initial Preferred (Medium
Delay) training sessions. H, Latency to make a head entry into food port after a reward is delivered for the Initial Less Preferred and the Initial Preferred training sessions. I, Preference ratio.
J, Reward consumption for each flavor during the preference tests. *p, 0.05.
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Table 1. Statistical analyses for Figure 1

Figure 1

1A – Different Delay training sessions: Initial Less Preferred
after short delays (n= 5 males, n= 5 females)

1B – Anticipatory head entries
Two-way mixed-effects model Session

F(2.07,18.63) = 29.92, p, 0.0001
Delay
F(1,9) = 0.01, p = 0.91

Two-way interaction
F(2.17,19.51) = 0.19, p = 0.84

1C – Latency to pellet
Two-way mixed-effects model Session

F(1.17,10.53) = 16.07, p= 0.002
Delay
F(1,9) = 0.03, p = 0.87

Two-way interaction
F(1.09,9.82) = 0.09, p = 0.80

1D – Preference ratio
Paired t test t(9) = 3.13, p = 0.01

1E – Reward consumption
Two-way mixed-effects model Training

F(1,9) = 14.05, p= 0.005
Flavor
F(1,9) = 10.02, p= 0.01

Two-way interaction
F(1,9) = 0.95, p= 0.36

Post hoc Sidak’s test Initial Less Preferred: t(9) = 4.43, p= 0.003 Initial Preferred: t(9) = 1.64, p= 0.25
1F – Same Delay training sessions (n= 7 males)
1G – Anticipatory head entries

Two-way mixed-effects model Session
F(2.83,16.99) = 37.89, p, 0.0001

Delay
F(1,6) = 1.20, p = 0.31

Two-way interaction
F(2.30,13.78) = 1.58, p = 0.24

1H – Latency to pellet
Two-way mixed-effects model Session

F(1.34,8.05) = 2.97, p = 0.12
Delay
F(1,6) = 1.49, p = 0.27

Two-way interaction
F(2.09,12.04) = 0.62, p = 0.56

1I – Preference ratio
Paired t test t(6) = 0.91, p = 0.40

1J – Reward consumption
Two-way mixed-effects model Training

F(1,6) = 15.15, p, 0.01
Flavor
F(1,6) = 23.47, p, 0.01

Two-way interaction
F(1,6) = 3.99, p= 0.09

Post hoc Sidak’s test Initial Less Preferred: t(6) = 1.56, p= 0.31 Initial Preferred: t(6) = 3.71, p= 0.02
Figure 1 Additional analyses: sex differences on Different
Delay training sessions: Initial Less Preferred after short delays

Anticipatory head entries
Three-way mixed-effects model Session

F(2.03, 16.27) = 27.27, p, 0.0001
Sex
F(1,32) = 0.07, p= 0.80

Delay
F(1,8) = 0.01, p= 0.92

Session � Sex
F(4,32) = 0.2, p= 0.93

Session � Delay
F(2.48,19.88) = 0.22, p= 0.85

Sex � Delay
F(1,32) = 0.006, p= 0.94

Three-way interaction
F(4,32) = 2.23, p= 0.09

Latency to pellet
Three-way mixed-effects model Session

F(4,32) = 16.11, p, 0.0001
Sex
F(1,32) = 1.67, p= 0.21

Delay
F(1,8) = 0.03, p= 0.88

Session � Sex
F(4,32) = 1.42, p= 0.25

Session � Delay
F(4,32) = 0.09, p= 0.99

Sex � Delay
F(1,32) = 0.12, p= 0.73

Three-way interaction
F(4,32) = 0.73, p= 0.58

Preference ratio
Two-way mixed-effects model Training

F(1,16) = 9.61, p= 0.007
Sex
F(1,16) = 0.09, p= 0.76

Two-way interaction
F(1,16) = 0.19, p= 0.67

Reward consumption
Initial Preferred
Two-way mixed-effects model

Training
F(1,8) = 2.55, p= 0.15

Sex
F(1,8) = 0.43, p= 0.53

Two-way interaction
F(1,8) = 0.55, p= 0.48

Initial Less Preferred
Two-way mixed-effects model

Training
F(1,16) = 19.96, p= 0.0004

Sex
F(1,16) = 0.40, p= 0.54

Two-way interaction
F(1,16) = 0.87, p= 0.36

Figure 1 Additional analyses: effect of Different Delay
training vs Same Delay training

Anticipatory head entries
Initial Preferred
Two-way mixed-effects model

Training
F(2.80,49.97) = 35.61, p, 0.0001

Delay Treatment
F(1,15) = 4.11, p= 0.06

Two-way interaction
F(4,60) = 1.79, p= 0.14

Initial Less Preferred
Two-way mixed-effects model

Training
F(2.75,41.28) = 33.85, p, 0.0001

Delay Treatment
F(1,15) = 6.72, p= 0.02

Two-way interaction
F(4,60) = 2.67, p= 0.04

Latency to pellet
Initial Preferred
Two-way mixed-effects model

Training
F(1.44,21.25) = 20.70, p, 0.0001

Delay Treatment
F(1,15) = 7.09, p= 0.02

Two-way interaction
F(4,59) = 2.26, p= 0.07

Initial Less Preferred
Two-way mixed-effects model

Training
F(1.64,24.62) = 4.66, p= 0.03

Delay Treatment
F(1,15) = 1.10, p= 0.31

Two-way interaction
F(4,60) = 1.51, p= 0.21

Preference ratio
Two-way mixed-effects model Training

F(1,30) = 8.24, p= 0.008
Delay Treatment
F(1,30) = 4.86, p= 0.04

Two-way interaction
F(1,30) = 3.16, p= 0.09

(Table continues.)
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Table 1), which was because of increased consumption of that
reward option (post hoc Sidak’s test: t(9) = 4.43, p= 0.003; Fig. 1E;
Table 1). There were no sex differences in anticipatory respond-
ing, latency to respond, the change in preference, or reward con-
sumption (Table 1). These data illustrate that the short temporal
delay before the delivery of the Initial Less Preferred reward sub-
sequently enhanced the value and preference for that reward
option.

The change in reward preference could be because of the
delays imposed during training sessions or alternatively could be
because of increased exposure with the Initial Less Preferred
reward. To address this possibility, we trained a separate group
of rats as described above, except that a 456 5 s ITI was used for
both the Initial Less Preferred and Initial Preferred reward train-
ing sessions (Same Delay training; Fig. 1F). Rats increased antici-
patory head entries into the food port across sessions, with no
difference between session type (two-way mixed-effects analysis;
session effect: F(2.83,16.99) = 37.89, p, 0.0001; delay effect: F(1,6) =
1.20, p=0.31; n=7; Fig. 1G; Table 1). There was no difference in
the latency between sessions (two-way mixed-effects analysis;
session effect: F(1.34,8.05) = 2.97, p=0.12; delay effect: F(1,6) = 1.49,
p=0.27; Fig. 1H; Table 1). Rats undergoing the Same Delay
training regimen did not alter their initial reward preference
(paired t test: t(6) = 0.91, p= 0.40; Fig. 1I; Table 1), as there was
no change in consumption of the Initial Less Preferred reward
(post hoc Sidak’s test: t(6) = 1.56, p=0.31; Fig. 1J; Table 1) and an
increased consumption of the Initial Preferred reward (post hoc
Sidak’s test: t(6) = 3.71, p= 0.02; Fig. 1J; Table 1). These experi-
ments collectively demonstrate that the temporal delays during
training sessions are responsible for altering reward preference.

In the next set of experiments, we examined whether the
existing preference for the Initial Preferred reward could be fur-
ther strengthened. To test this, a separate group of rats were
trained to receive the Initial Less Preferred reward during
Long Delay sessions and the Initial Preferred reward during
Short Delay sessions (Fig. 2A). There was no difference in
anticipatory head entries between Long and Short Delay ses-
sions (two-way mixed-effects analysis; session effect: F(1.89,20.83) =
6.52, p, 0.01; delay effect: F(1,11) = 0.05, p=0.83; n=12; Fig. 2B;
Table 2). There was also no difference in the latency to respond
between session type (two-way mixed-effects analysis; session
effect: F(1.32,14.48) = 54.17, p, 0.0001; delay effect: F(1,11) = 0.16,
p=0.70; Fig. 2C; Table 2). We anticipated rats would exhibit a
stronger preference for the Initial Preferred reward, in line with
the results from the first experiment (Fig. 1). However, we instead
found that this training regimen increased the rats’ preference for
the Initial Less Preferred reward (paired t test: t(11) = 2.33, p=0.04;
Fig. 2D; Table 2) because of increased consumption of that reward
option (post hoc Sidak’s test: t(11) = 2.65, p, 0.05; Fig. 2E; Table
2). This cohort also exhibited an increased consumption of the
Initial Preferred reward after training (post hoc Sidak’s test: t(11) =
2.98, p=0.03; Fig. 2E; Table 2). Given these unexpected findings,
we performed further behavioral analyses to relate the change in
preference to changes in food consumption. A stronger increase

in preference toward the Initial Less Preferred reward was posi-
tively related to the consumption of that reward option (r2 = 0.96,
p, 0.0001; Fig. 2F; Table 2) and inversely related to the consump-
tion of the Initial Preferred reward (r2 = 0.38, p=0.03; Fig. 2G;
Table 2). Our results demonstrate that delivering the Initial Less
Preferred reward after long delays subsequently enhances the pref-
erence for that option. Furthermore, this establishes a training
procedure to examine how sunk temporal costs subsequently
influence reward consumption and preference (Clement et al.,
2000; Friedrich and Zentall, 2004; Alessandri et al., 2008).

We next sought to identify the neural systems responsible for
sunk temporal costs increasing the preference for an initially less
desirable reward. Perturbations of the dopamine system affect
decisions in timing-related tasks (Cardinal et al., 2000; Wade et
al., 2000; Koffarnus et al., 2011). Additionally, dopamine neurons
contribute to reward learning, and encode the preference
between options as well as changes in reward value (Fiorillo et
al., 2003; Wise, 2004; Tobler et al., 2005; Gan et al., 2010;
Steinberg et al., 2013; Lak et al., 2014; Fonzi et al., 2017; Berke,
2018). As such, we examined whether the change in reward pref-
erence could be prevented by administering systemic injections
of flupenthixol before training sessions (Fig. 3A). Anticipatory
head entries into the food port were disrupted by flupenthixol
treatment across sessions (three-way mixed-effects analysis;
session effect: F(3.02,66.43) = 22.26, p, 0.0001; treatment effect:
F(1,87) = 11.22, p, 0.01; session � treatment effect: F(4,87) =
11.22, p, 0.0001; n= 12 saline, n=12 flupenthixol; Fig. 3B;
Table 3). Flupenthixol treatment also slowed the time to retrieve
the reward during training sessions (three-way mixed-effects
analysis; session effect: F(4,88) = 43.04, p, 0.0001; treatment
effect: F(1,22) = 6.18, p=0.02; Fig. 3C; Table 3). However, antago-
nizing dopamine receptors during training sessions did not pre-
vent the increased preference for the Initial Less Preferred
reward (two-way mixed-effects analysis; training effect: F(1,22) =
30.86, p, 0.0001; treatment effect: F(1,22) = 0.11, p=0.74; inter-
action effect: F(1,22) = 0.77, p= 0.39; post hoc Sidak’s test; saline:
t(22) = 4.55, p, 0.001; flupenthixol: t(22) = 3.31, p, 0.01; Fig. 3D;
Table 3). Both saline- and flupenthixol-treated rats increased the
consumption of the Initial Less Preferred reward (post hoc Sidak’s
test; saline: t(11) = 4.92, p, 0.001; flupenthixol: t(11) = 3.54,
p, 0.01; Fig. 3E; Table 3) with no change in consumption of the
Initial Preferred reward (post hoc Sidak’s test; saline: t(11) = 0.91,
p=0.62; flupenthixol: t(11) = 1.77, p=0.20; Fig. 3E; Table 3). The
change in reward preference was positively related to the con-
sumption of the Initial Less Preferred reward (saline: r2 = 0.72,
p, 0.001, flupenthixol: r2 = 0.74, p, 0.001; Fig. 3F; Table 3) and
inversely related to the consumption of the Initial Preferred
reward in both saline- and flupenthixol-treated animals (saline:
r2 = 0.54, p, 0.01, flupenthixol: r2 = 0.46, p=0.02; Fig. 3G; Table
3). The only sex difference identified was in flupenthixol-treated
rats where there was a longer latency to retrieve the pellet in
female rats (three-way mixed-effects analysis; sex effect: F(1,40) =
5.44, p=0.03; session � sex effect: F(4,40) = 2.23, p=0.08; Table 3),
which is consistent with prior work demonstrating sex-dependent

Table 1. Continued

Figure 1

Reward consumption
Initial Preferred
Two-way mixed-effects model

Training
F(1,15) = 15.37, p= 0.001

Delay Treatment
F(1,15) = 2.16, p= 0.16

Two-way interaction
F(1,15) = 3.37, p= 0.09

Initial Less Preferred
Two-way mixed-effects model

Training
F(1,30) = 16.00, p = 0.0004

Delay Treatment
F(1,30) = 1.22, p= 0.28

Two-way interaction
F(1,30) = 1.59, p= 0.22
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effects of flupenthixol on latency (Eubig et al., 2014). These data
collectively demonstrate that the dopamine system regulates both
anticipatory head entries and the latency to respond during train-
ing sessions but does not mediate the increased preference for the
less desirable reward elicited by high temporal costs.

We then examined whether the OFC could mediate the
change in preference as lesions to the OFC alter decision-making
in timing-related tasks (Kheramin et al., 2004; Winstanley et al.,
2004). Additionally, the OFC encodes value-based parameters
and participates in reward-learning and decision-making (Rolls,
2004; Schoenbaum et al., 2009; McDannald et al., 2011; Padoa-
Schioppa, 2013; Rhodes and Murray, 2013; Stalnaker et al., 2015;
Izquierdo, 2017; Padoa-Schioppa and Conen, 2017). We per-
formed excitotoxic lesions of the OFC or sham surgeries before
the initial preference test (Fig. 4A,B). There was no difference in
anticipatory head entries into the food port between sham and

OFC-lesioned rats across training sessions (three-way mixed-
effects analysis; session effect: F(4,72) = 42.42, p=0.0001; treat-
ment effect: F(1,18) = 1.33, p= 0.27; delay effect: F(1,18) = 0.43,
p= 0.52; interaction effect: F(4,72) = 0.25, p=0.91; n=10 sham
rats, n= 10 lesion rats; Fig. 4C; Table 4). The latency to retrieve
the food pellet also did not differ between sham and OFC-
lesioned rats across training sessions (three-way mixed-effect
analysis; session effect: F(4,72) = 42.42, p, 0.0001; treatment
effect: F(1,18) = 0.10, p=0.76; delay effect: F(1,18) = 0.05, p= 0.82;
interaction effect: F(4,72) = 0.90, p=0.47; Fig. 4D; Table 4).
Lesioning the OFC did not prevent the change in preference fol-
lowing training (two-way mixed-effects analysis; training effect:
F(1,18) = 28.64, p, 0.0001; treatment effect: F(1,18) = 0.35,
p= 0.56; interaction effect: F(1,18) = 0.0001, p=0.99; Fig. 4E;
Table 4). Training resulted in an enhanced preference for the
Initial Less Preferred reward in sham surgery and OFC-lesioned

 

Figure 2. Increased preference for the Initial Less Preferred reward delivered after long delays. A, Training schematic for the Different Delay training sessions: Initial Less Preferred after long
delays. B, Anticipatory head entries into the food port during the 5 s before reward delivery for the Initial Less Preferred (Long Delay) and Initial Preferred (Short Delay) training sessions. C,
Latency to make a head entry into the food port after a reward is delivered for the Initial Less Preferred and Initial Preferred training sessions. D, Preference ratio plotted as the amount of the
Initial Less Preferred food consumed out of the total food consumed during preference tests. E, Reward consumption for each flavor during the preference tests. F, G, Linear regression relating
the change in food consumption as a function of the change in the preference ratio. *p, 0.05.
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rats (post hoc Sidak’s test; sham: t(18) = 3.78, p, 0.01; lesion: t(18)
= 3.79, p, 0.01; Fig. 4E; Table 4). Both groups exhibited a selec-
tive increase in the consumption of the Initial Less Preferred
reward (post hoc Sidak’s test; sham: t(9) = 3.89, p, 0.01; lesion:
t(9) = 3.26, p=0.02; Fig. 4F; Table 4) with no change in the con-
sumption of the Initial Preferred reward (post hoc Sidak’s test;
sham: t(9) = 0.47, p=0.88; lesion: t(9) = 0.73, p=0.73; Fig. 4F;
Table 4). The change in reward preference was positively related
to the consumption of the Initial Less Preferred reward (sham:
r2 = 0.95, p, 0.001, lesion: r2 = 0.85, p, 0.001; Fig. 4G; Table 4)
and inversely related to the consumption of the Initial Preferred
reward in sham surgery and OFC-lesioned rats (sham: r2 = 0.68,
p, 0.01, lesion: r2 = 0.48, p=0.03; Fig. 4H; Table 4). Therefore,
the OFC is not involved with the enhanced preference for an ini-
tially less desirable reward that follows a long delay in training
sessions.

Increasing evidence highlights the BLA is a critical nucleus
that contributes to learning, timing-related decisions, reward val-
uation, and reward seeking (Maren, 1999; Winstanley et al.,
2004; Ambroggi et al., 2008; Namburi et al., 2015; Wassum and
Izquierdo, 2015; Malvaez et al., 2019; Morse et al., 2020). As
such, the BLA could potentially mediate the change in reward
preference following the training regimen where the Initial Less
Preferred reward was delivered after long delays. Rats underwent
a surgery to lesion the BLA or a sham procedure before the initial
preference test (Fig. 5A,B). The anticipatory head entries into the
food port did not differ between sham and BLA-lesioned rats

across training sessions (three-way mixed-effects analysis; ses-
sion effect: F(2.94,41.22) = 10.45, p, 0.0001; treatment effect:
F(1,14) = 0.01, p= 0.92; delay effect: F(1,14) = 0.004, p= 0.95; inter-
action effect: F(4,56) = 0.50, p= 0.74; n=8 sham rats, n= 8 lesion
rats; Fig. 5C; Table 5). There was also no difference in the latency
to retrieve a food pellet between sham surgery and BLA-lesioned
rats across training sessions (three-way mixed-effect analysis;
session effect: F(4,56) = 71.96, p, 0.0001; treatment effect:
F(1,14) = 0.19, p=0.67; delay effect: F(1,14) = 0.26, p= 0.62; interac-
tion effect: F(4,56) = 0.05, p=0.99; Fig. 5D; Table 5). However,
lesioning the BLA prevented the change in preference following
training (two-way mixed-effects analysis; training effect: F(1,14) =
30.69, p, 0.0001; treatment effect: F(1,14) = 3.55, p=0.08; inter-
action effect: F(1,14) = 15.17, p, 0.01; Fig. 5E; Table 5). Sham sur-
gery rats exhibited an enhanced preference for the Initial Less
Preferred reward (post hoc Sidak’s test; sham: t(14) = 6.67,
p, 0.0001; Fig. 5E; Table 5), which was because of a selective
increase in the consumption of the Initial Less Preferred reward
(post hoc Sidak’s test; Initial Less Preferred flavor: t(7) = 5.99,
p, 0.01; Initial Preferred flavor: t(7) = 2.2, p=0.12; Fig. 5F; Table
5). In contrast, BLA lesions prevented the change in reward pref-
erence (post hoc Sidak’s test; lesion: t(14) = 1.16, p= 0.46; Fig. 5E;
Table 5), as rats selectively increased the consumption of the
Initial Preferred reward (post hoc Sidak’s test; Initial Less
Preferred flavor: t(7) = 2.4, p=0.09; Initial Preferred flavor: t(7) =
4.13, p, 0.01; Fig. 5F; Table 5). The change in reward preference
in sham surgery rats was inversely related to the change in

Table 2. Statistical analyses for Figure 2

Figure 2
Different Delay training sessions: Initial Less Preferred
after long delays (n= 12 males)

2B – Anticipatory head entries
Two-way mixed-effects model Session

F(1.89,20.83) = 6.52, p, 0.01
Delay
F(1,11) = 0.05, p= 0.83

Two-way interaction
F(2.66,29.27) = 0.92, p= 0.43

2C – Latency to pellet
Two-way mixed-effects model Session

F(1.32,14.48) = 54.17, p, 0.0001
Delay
F(1,11) = 0.16, p= 0.70

Two-way interaction
F(1.13,12.43) = 0.23, p= 0.67

2D – Preference ratio
Paired t test t(11) = 2.33, p= 0.04

2E – Reward consumption
Two-way mixed-effects model Training

F(1,11) = 15.56, p, 0.01
Flavor
F(1,11) = 12.27, p, 0.01

Two-way interaction
F(1,11) = 0.99, p= 0.34

Post hoc Sidak’s test Initial Less Preferred: t(11) = 2.65, p, 0.05 Initial Preferred: t(11) = 2.98, p= 0.03
2F – Initial Less Preferred correlation r2 = 0.96, p, 0.0001 2G – Initial Preferred correlation r2 = 0.38, p= 0.03
Figure 2 Additional analyses: effect of Different
Delay training vs Figure 1 Same Delay training

Anticipatory head entries
Initial Preferred
Two-way mixed-effects model

Training
F(2.24,38.13) = 13.69, p, 0.0001

Delay Treatment
F(1,17) = 5.62, p= 0.03

Two-way interaction
F(4,68) = 0.06, p= 0.99

Initial Less Preferred
Two-way mixed-effects model

Training
F(2.67,45.32) = 11.80, p, 0.0001

Delay Treatment
F(1,17) = 7.05, p= 0.02

Two-way interaction
F(4,68) = 1.14, p= 0.35

Latency to pellet
Initial Preferred
Two-way mixed-effects model

Training
F(1.08,18.08) = 12.59, p= 0.002

Delay Treatment
F(1,17) = 4.62, p = 0.05

Two-way interaction
F(4,67) = 2.12, p= 0.09

Initial Less Preferred
Two-way mixed-effects model

Training
F(2.13,36.16) = 9.02, p= 0.0005

Delay Treatment
F(1,17) = 1.10, p= 0.35

Two-way interaction
F(4,68) = 2.91, p= 0.03

Preference ratio
Two-way mixed-effects model Training

F(1,17) = 4.43, p= 0.05
Delay Treatment
F(1,17) = 1.02, p= 0.33

Two-way interaction
F(1,17) = 1.16, p= 0.30

Reward consumption
Initial Preferred
Two-way mixed-effects model

Training
F(1,17) = 13.79, p= 0.002

Delay Treatment
F(1,17) = 0.002, p= 0.96

Two-way interaction
F(1,17) = 0.29, p= 0.60

Initial Less Preferred
Two-way mixed-effects model

Training
F(1,34) = 6.88, p = 0.01

Delay Treatment
F(1,34) = 1.64, p= 0.21

Two-way interaction
F(1,34) = 1.25, p= 0.27
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consumption of the Initial Preferred reward (Initial Less
Preferred: r2 = 0.02, p=0.14; Initial Preferred: r2 = 0.60, p= 0.02;
Fig. 5G,H; Table 5). A similar trend was observed in BLA-
lesioned rats (Initial Less Preferred: r2 = 0.38, p= 0.1; Initial
Preferred: r2 = 0.52, p=0.04; Fig. 5G,H; Table 5). These data col-
lectively illustrate that the BLA is required for the enhanced pref-
erence for a less desirable reward associated with high temporal
costs.

The RSC is another brain region that could participate in sus-
tained changes in reward preference given its role in learning
and timing-related decisions, and that RSC neurons respond to
rewards to encode value-related signals (Todd et al., 2015, 2019;

Vedder et al., 2017; Hattori et al., 2019; Fischer et al., 2020). To
address this possibility, rats underwent an RSC lesion or a sham
surgery before the initial preference test (Fig. 6A,B). We found a
significant interaction between treatment and delay on the antic-
ipatory head entries between sham and RSC-lesioned rats (three-
way mixed-effects analysis; session effect: F(3.09,43.21) = 14.14,
p, 0.0001; treatment effect: F(1,53) = 0.10, p=0.75; delay effect:
F(1,14) = 0.06, p= 0.81; treatment � delay effect: F(1,53) = 5.04,
p= 0.03; interaction effect: F(4,53) = 2.44, p=0.06; n=8 sham rats,
n= 8 lesion rats; Fig. 6C; Table 6). There was no difference in the
post-reward latency to retrieve a food pellet between sham sur-
gery and RSC-lesioned rats across training sessions (three-way

Figure 3. The enhanced preference for the Initial Less Preferred reward delivered after long delays does not involve dopamine signaling. A, Training schematic. B, Anticipatory head entries
into the food port in rats that received injections of saline or flupenthixol. C, Latency to make a head entry into the food port after a reward is delivered during training sessions in rats that
received injections of saline or flupenthixol. D, Preference ratio in rats receiving saline (left) or flupenthixol (right) injections. E, Reward consumption for each flavor during the preference tests
in rats receiving saline (left) or flupenthixol (right) injections. F, G, Linear regression relating the change in food consumption as a function of the change in the preference ratio. *p, 0.05.
**p, 0.01. ***p, 0.001.
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Table 3. Statistical analyses for Figure 3

Figure 3
(saline: n= 6 males, n= 6 females; flupenthixol:
n= 6 males, n= 6 females)

3B – Anticipatory head entries
Three-way mixed-effects model Session

F(3.02,66.43) = 22.26, p, 0.0001
Treatment
F(1,87) = 11.22, p, 0.01

Delay
F(1,22) = 0.05, p= 0.82

Session � Treatment
F(4,87) = 11.22, p, 0.0001

Session � Delay
F(3.14,66.37) = 0.14, p= 0.94

Treatment � Delay
F(1,87) = 1.88, p= 0.17

Three-way interaction
F(4,87) = 0.32, p= 0.86

3C – Latency to pellet
Three-way mixed-effects model Session

F(4,88) = 43.04, p, 0.0001
Treatment
F(1,22) = 6.18, p= 0.02

Delay
F(1,22) = 0.02, p= 0.88

Session � Treatment
F(4,88) = 0.39, p= 0.82

Session � Delay
F(4,88) = 1.14, p= 0.35

Treatment � Delay
F(1,22) = 0.0007, p= 0.97

Three-way interaction
F(4,88) = 1.53, p= 0.20

3D – Preference ratio
Two-way mixed-effects model Training

F(1,22) = 30.86, p, 0.0001
Treatment
F(1,22) = 0.11, p= 0.74

Two-way interaction
F(1,22) = 0.77, p= 0.39

Post hoc Sidak’s test Saline: t(22) = 4.55, p, 0.001 Flupenthixol: t(22) = 3.31, p, 0.01
3E – Reward consumption

Saline
Two-way mixed-effects model

Training
F(1,11) = 12.38, p, 0.01

Flavor
F(1,11) = 11.75, p, 0.01

Two-way interaction
F(1,11) = 4.04, p= 0.07

Post hoc Sidak’s test Initial Less Preferred: t(11) = 4.92, p, 0.001 Initial Preferred: t(11) = 0.91, p= 0.62
Flupenthixol
Two-way mixed-effects model

Training
F(1,11) = 12, p, 0.01

Flavor
F(1,11) = 14.05, p, 0.01

Two-way interaction
F(1,11) = 0.30, p= 0.59

Post hoc Sidak’s test Initial Less Preferred: t(11) = 3.54, p, 0.01 Initial Preferred: t(11) = 1.77, p= 0.20
3F – Initial Less Preferred correlation Saline

r2 = 0.72, p, 0.001
Flupenthixol
r2 = 0.74, p, 0.001

3G – Initial Preferred correlation Saline
r2 = 0.54, p, 0.01

Flupenthixol
r2 = 0.46, p= 0.02

Figure 3 Additional analyses: sex differences
Anticipatory head entries

Saline
Three-way mixed-effects model

Session
F(2.71,27.07) = 20.37, p, 0.0001

Sex
F(1,39) = 0.52, p= 0.47

Delay
F(1,10) = 0.46, p= 0.51

Session � Sex
F(4,39) = 1.59, p= 0.20

Session � Delay
F(2.41,23.51) = 0.16, p= 0.89

Sex � Delay
F(1,39) = 0.90, p= 0.35

Three-way interaction
F(4,39) = 1.44, p= 0.24

Flupenthixol
Three-way mixed-effects model

Session
F(2.61,26.10) = 3.34, p= 0.04

Sex
F(1,40) = 3.19, p= 0.08

Delay
F(1,10) = 2.19, p= 0.17

Session � Sex
F(4,40) = 0.49, p= 0.74

Session � Delay
F(2.89,28.85) = 0.41, p= 0.74

Sex � Delay
F(1,40) = 0.37, p= 0.55

Three-way interaction
F(4,40) = 0.38, p= 0.82

Latency to pellet
Saline
Three-way mixed-effects model

Session
F(4,40) = 17.86, p, 0.0001

Sex
F(1,40) = 0.63, p= 0.43

Delay
F(1,10) = 0.009, p= 0.93

Session � Sex
F(4,40) = 1.15, p= 0.35

Session � Delay
F(4,40) = 0.48, p= 0.75

Sex � Delay
F(1,40) = 0.88, p= 0.54

Three-way interaction
F(4,40) = 0.50, p= 0.75

Flupenthixol
Three-way mixed-effects model

Session
F(4,40) = 16.29, p, 0.0001

Sex
F(1,40) = 5.44, p= 0.03

Delay
F(1,10) = 15.81, p, 0.01

Session � Sex
F(4,40) = 2.23, p= 0.08

Session � Delay
F(4,40) = 1.02, p= 0.41

Sex � Delay
F(1,40) = 1.17, p= 0.29

Three-way interaction
F(4,40) = 1.50, p= 0.22

Preference ratio
Saline
Two-way mixed-effects model

Training
F(1,10) = 19.60, p, 0.01

Sex
F(1,10) = 0.01, p= 0.91

Two-way interaction
F(1,10) = 0.0004, p= 0.99

Flupenthixol
Two-way mixed-effects model

Training
F(1,10) = 9.56, p= 0.01

Sex
F(1,10) = 0.02, p= 0.89

Two-way interaction
F(1,10) = 0.003, p= 0.96

Reward consumption
Saline – Initial Preferred
Two-way mixed-effects model

Training
F(1,10) = 0.81, p= 0.39

Sex
F(1,10) = 0.17, p= 0.69

Two-way interaction
F(1,10) = 0.75, p= 0.41

Saline – Initial Less Preferred
Two-way mixed-effects model

Training
F(1,10) = 22.19, p, 0.001

Sex
F(1,10) = 0.07, p= 0.80

Two-way interaction
F(1,10) = 0.08, p= 0.78

Flupenthixol – Initial Preferred
Two-way mixed-effects model

Training
F(1,10) = 2.85, p= 0.12

Sex
F(1,10) = 0.78, p= 0.40

Two-way interaction
F(1,10) = 0.02, p= 0.88

Flupenthixol – Initial Less Preferred
Two-way mixed-effects model

Training
F(1,20) = 13.10, p, 0.01

Sex
F(1,20) = 1.87, p= 0.19

Two-way interaction
F(1,20) = 0.39, p= 0.54

Figure 3 Additional analyses: effect of Different
Delay training vs Figure 1 Same Delay training

(Table continues.)
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Figure 4. The OFC is not required for the enhanced preference for the Initial Less Preferred reward delivered after long delays. A, Training schematic. B, Top, The extent of OFC lesions across
three coronal planes with the anterior distance from bregma (millimeters) indicated. Bottom, Representative OFC lesion. C, Anticipatory head entries into the food port in sham or OFC-lesioned
rats. D, Latency to make a head entry into the food port after a reward is delivered during training sessions in sham or OFC-lesioned rats. E, Preference ratio in sham (left) or OFC-lesioned
(right) rats. F, Reward consumption for each flavor during the preference tests in sham (left) or OFC-lesioned (right) rats. G, H, Linear regression relating the change in food consumption as a
function of the change in the preference ratio. *p, 0.05. **p, 0.01.

Table 3. Continued

Figure 3
(saline: n= 6 males, n= 6 females; flupenthixol:
n= 6 males, n= 6 females)

Preference ratio
Saline vs Same Delay
Two-way mixed-effects model

Training
F(1,17) = 13.16, p= 0.002

Delay Treatment
F(1,17) = 3.90, p= 0.06

Two-way interaction
F(1,17) = 5.57, p= 0.03

Flupenthixol vs Same Delay
Two-way mixed-effects model

Training
F(1,17) = 7.44, p= 0.01

Delay Treatment
F(1,17) = 2.21, p= 0.16

Two-way interaction
F(1,17) = 2.25, p= 0.15
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mixed-effect analysis; session effect: F(4,56) = 43.99, p, 0.0001;
treatment effect: F(1,53) = 0.18, p= 0.68; delay effect: F(1,14) = 0.59,
p=0.45; interaction effect: F(4,53) = 1.26, p=0.30; Fig. 6D; Table
6). Lesioning the RSC prevented the change in preference follow-
ing training (two-way mixed-effects analysis; training effect:
F(1,14) = 10.64, p, 0.01; treatment effect: F(1,14) = 12.69, p, 0.01;
interaction effect: F(1,14) = 17.36, p= 0.001; Fig. 6E; Table 6).
Sham rats exhibited an enhanced preference for the Initial Less
Preferred reward (post hoc Sidak’s test; sham: t(14) = 5.25,
p= 0.0002; Fig. 6E; Table 6), which was accompanied by an
increased consumption of both rewards following training (post
hoc Sidak’s test; Initial Less Preferred flavor: t(7) = 4.31, p, 0.01;
Initial Preferred flavor: t(7) = 2.95, p= 0.04; Fig. 6F; Table 6).
RSC-lesioned rats consumed a greater amount of the Initial
Preferred reward relative to sham controls during the pretraining
preference test (post hoc Sidak’s test; pretraining: t(28) = 2.98,

p= 0.01; Table 6). There was no change in preference following
training (post hoc Sidak’s test; lesion: t(14) = 0.64, p= 0.78; Fig.
6E; Table 6), as RSC lesioned rats exhibited a further increase in
the consumption of the Initial Preferred reward (post hoc Sidak’s
test; Initial Less Preferred flavor: t(7) = 0.28, p=0.95; Initial
Preferred flavor: t(7) = 10.63, p, 0.0001; Fig. 6F; Table 6). The
relative change in reward preference and consumption of the
Initial Less Preferred reward was positively correlated across
RSC lesion and sham groups (Initial Less Preferred sham: r2 =
0.52, p=0.04, lesion: r2 = 0.87, p, 0.001; Initial Preferred sham:
r2 = 0.02, p=0.74; lesion: r2 = 0.36, p=0.11; Fig. 6G,H; Table 6).
Our results highlight that both the BLA and RSC are necessary
for increasing the preference toward an initial less desirable
reward option associated with sunk temporal costs.

When examining all subjects trained to experience the Initial
Less Preferred reward after a Long Delay (Figs. 2-6), the change

Table 4. Statistical analyses for Figure 4

Figure 4
(OFC lesion: n= 10 males; sham: n= 10 males)

4C – Anticipatory head entries
Three-way mixed-effects model Session

F(4,72) = 42.42, p= 0.0001
Treatment
F(1,18) = 1.33, p= 0.27

Delay
F(1,18) = 0.43, p= 0.52

Session � Treatment
F(4,72) = 0.58, p= 0.68

Session � Delay
F(2.36,42.54) = 1.86, p= 0.16

Treatment � Delay
F(1,18) = 0.01, p= 0.92

Three-way interaction
F(4,72) = 0.25, p= 0.91

4D – Latency to pellet
Three-way mixed-effects model Session

F(4,72) = 42.42, p, 0.0001
Treatment
F(1,18) = 0.10, p= 0.76

Delay
F(1,18) = 0.05, p= 0.82

Session � Treatment
F(4,72) = 0.39, p= 0.82

Session � Delay
F(4,72) = 0.14, p= 0.97

Treatment � Delay
F(1,18) = 1.87, p= 0.19

Three-way interaction
F(4,72) = 0.90, p= 0.47

4E – Preference ratio
Two-way mixed-effects model Training

F(1,18) = 28.64, p, 0.0001
Treatment
F(1,18) = 0.35, p= 0.56

Two-way interaction
F(1,18) = 0.0001, p= 0.99

Post hoc Sidak’s test Sham: t(18) = 3.78, p, 0.01 OFC lesion: t(18) = 3.79, p, 0.01
4F – Reward consumption

Sham
Two-way mixed-effects model

Training
F(1,9) = 3.82, p= 0.08

Flavor
F(1,9) = 14.1, p, 0.01

Two-way interaction
F(1,9) = 7.17, p= 0.03

Post hoc Sidak’s test Initial Less Preferred: t(9) = 3.89, p, 0.01 Initial Preferred: t(9) = 0.47, p= 0.88
OFC lesion
Two-way mixed-effects model

Training
F(1,9) = 1.56, p= 0.24

Flavor
F(1,9) = 4.73, p= 0.06

Two-way interaction
F(1,9) = 6.04, p= 0.04

Post hoc Sidak’s test Initial Less Preferred: t(9) = 3.26, p= 0.02 Initial Preferred: t(9) = 0.73, p= 0.73
4G – Initial Less Preferred correlation Sham

r2 = 0.95, p, 0.001
OFC lesion
r2 = 0.85, p, 0.001

4H – Initial Preferred correlation Sham
r2 = 0.68, p, 0.01

OFC lesion
r2 = 0.48, p= 0.03

Figure 4 Additional analyses: sham vs OFC lesion
Preference ratio

Post hoc Sidak’s test Pretraining
t(36) = 0.47, p= 0.87

Post-training
t(36) = 0.49, p= 0.86

Reward consumption
Initial Preferred
Two-way mixed-effects model

Training
F(1,18) = 0.70, p= 0.41

Treatment
F(1,18) = 1.32, p= 0.27

Two-way interaction
F(1,18) = 0.02, p= 0.89

Post hoc Sidak’s test Pretraining: t(36) = 0.99, p= 0.55 Post-training: t(36) = 1.10, p= 0.48
Initial Less Preferred
Two-way mixed-effects model

Training
F(1,18) = 25.73, p, 0.0001

Treatment
F(1,18) = 0.13, p= 0.72

Two-way interaction
F(1,18) = 1.05, p= 0.32

Post hoc Sidak’s test Pretraining: t(36) = 0.29, p= 0.95 Post-training: t(36) = 0.88, p= 0.62
Total food consumption
Two-way mixed-effects model

Training
F(1,18) = 15.49, p= 0.001

Treatment
F(1,18) = 1.62, p= 0.22

Two-way interaction
F(1,18) = 1.46, p= 0.24

Post hoc Sidak’s test Pretraining: t(36) = 0.84, p= 0.65 Post-training: t(36) = 1.58, p= 0.23
Figure 4 Additional analyses: effect of Different
Delay training vs Figure 1 Same Delay training

Preference ratio
Sham vs Same Delay
Two-way mixed-effects model

Training
F(1,15) = 11.15, p= 0.005

Delay Treatment
F(1,15) = 1.56, p= 0.23

Two-way interaction
F(1,15) = 4.89, p= 0.04

OFC lesion vs Same Delay
Two-way mixed-effects model

Training
F(1,15) = 10.27, p= 0.006

Delay Treatment
F(1,15) = 3.89, p= 0.07

Two-way interaction
F(1,15) = 4.53, p= 0.05
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in reward preference was positively related to the consumption
of the Initial Less Preferred reward (r2 = 0.76, p, 0.001) and
inversely related to the consumption of the Initial Preferred
reward (r2 = 0.47, p, 0.001; n=88 rats). This suggests that rats
exhibiting a robust increase in preference toward the Initial Less
Preferred reward could potentially decrease the consumption of
the Initial Preferred reward following training. We therefore ana-
lyzed the relative food consumption across subjects based on
whether there was a mild increase in preference toward the
Initial Preferred reward (Fig. 7A, orange), a mild increase in pref-
erence toward the Initial Less Preferred reward (Fig. 7A, light

blue), or a robust increase in preference toward the Initial Less
Preferred reward (Fig. 7A, dark blue). The relative change in
food consumption for each reward differed according to the
change in reward preference (two-way mixed-effects analysis; fla-
vor effect: F(1,85) = 3.89, p=0.05; change in preference effect:
F(2,85) = 5.78, p, 0.01; interaction effect: F(2,85) = 116.2,
p, 0.0001; Fig. 7B–D; Table 7). Rats exhibiting a mild increase
in preference toward the original reward preference selectively
increased the consumption of the Initial Preferred reward (one-
sample t test relative to 0: Initial Less Preferred: t(15) = 0.69,
p=0.50; Initial Preferred: t(15) = 8.39, p, 0.0001; Fig. 7B; Table 7).
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Figure 5. The BLA is required for the enhanced preference for the Initial Less Preferred reward delivered after long delays. A, Training schematic. B, Top, The extent of BLA lesions across
four coronal planes with the anterior distance from bregma (millimeters) indicated. Bottom, Representative BLA lesion. C, Anticipatory head entries into the food port in sham or BLA-lesioned
rats. D, Latency to make a head entry into the food port after a reward is delivered during training sessions in sham or BLA-lesioned rats. E, Preference ratio in sham (left) or BLA-lesioned
(right) rats. F, Reward consumption for each flavor during the preference tests in sham (left) or BLA-lesioned (right) rats. G, H, Linear regression relating the change in food consumption as a
function of the change in the preference ratio. **p, 0.01. ****p, 0.0001.
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Rats with a mild increase in preference toward the Initial Less
Preferred reward increased the consumption of both rewards
(one-sample t test relative to 0: Initial Less Preferred: t(44) =
88.88, p, 0.0001; Initial Preferred: t(44) = 5.47, p, 0.0001; Fig. 7C;
Table 7). Interestingly, rats with a robust increase in preference to-
ward the Initial Less Preferred reward increased the consumption
of the Initial Less Preferred and decreased the consumption of the
Initial Preferred reward (one-sample t test relative to 0: Initial Less
Preferred: t(26) = 16.99, p, 0.0001; Initial Preferred: t(26) = 2.23,
p=0.04; Fig. 7D; Table 7). Together, these results highlight that
sunk temporal costs can positively impact the value of an Initial
Less Preferred reward as well as negatively impact the value of the
alternative initially preferred option.

Discussion
Prior research has identified a number of factors that can alter
reward preference. For example, allowing free access to one

reward option before a preference test will devalue that reward
and elicit a transient change in preference (Roesch et al., 2007;
Cone et al., 2016; Papageorgiou et al., 2016). Long-term changes
in preference can be induced by pairing a reward with an aver-
sive outcome (Colby and Smith, 1977). Here, we demonstrate
that the temporal delay before a reward delivery can enhance the
preference for an initially less desirable option. In the first experi-
ment, the Initial Less Preferred reward was delivered after a short
delay while the Initial Preferred reward was delivered after a long
delay. Under this training regimen, rats increased their con-
sumption and preference for the Initial Less Preferred option.
These results indicate reward preference was enhanced by the
higher rate of reward during Short Delay training sessions, which
is consistent with decisions influenced by maximizing the reward
rate (Khodadadi et al., 2014). This behavioral phenomenon is
also in line with temporal discounting studies exhibiting
increased preference for a reward delivered after a short delay/

Table 5. Statistical analyses for Figure 5

Figure 5
(BLA lesion: n= 8 males; sham: n= 8 males)

5C – Anticipatory head entries
Three-way mixed-effects model Session

F(2.94,41.22) = 10.45, p, 0.0001
Treatment
F(1,14) = 0.009, p= 0.92

Delay
F(1,14) = 0.004, p= 0.95

Session � Treatment
F(4,56) = 0.12, p= 0.97

Session � Delay
F(2.88,40.33) = 0.67, p= 0.57

Treatment � Delay
F(1,14) = 3.80, p= 0.07

Three-way interaction
F(4,56) = 0.50, p= 0.74

5D – Latency to pellet
Three-way mixed-effects model Session

F(4,56) = 71.96, p, 0.0001
Treatment
F(1,14) = 0.19, p= 0.67

Delay
F(1,14) = 0.26, p= 0.62

Session � Treatment
F(4,56) = 1.02, p= 0.41

Session � Delay
F(4,56) = 0.14, p= 0.97

Treatment � Delay
F(1,14) = 0.001, p= 0.97

Three-way interaction
F(4,56) = 0.05, p= 0.99

5E – Preference ratio
Two-way mixed-effects model Training

F(1,14) = 30.69, p, 0.0001
Treatment
F(1,14) = 3.55, p= 0.08

Two-way interaction
F(1,14) = 15.17, p, 0.01

Post hoc Sidak’s test Sham: t(14) = 6.67, p, 0.0001 BLA lesion: t(14) = 1.16, p = 0.46
5F – Reward consumption

Sham
Two-way mixed-effects model

Training
F(1,7) = 33.08, p, 0.001

Flavor
F(1,7) = 3.53, p= 0.10

Two-way interaction
F(1,7) = 6.72, p= 0.04

Post hoc Sidak’s test Initial Less Preferred: t(7) = 5.99, p, 0.01 Initial Preferred: t(7) = 2.2, p= 0.12
BLA lesion
Two-way mixed-effects model

Training
F(1,7) = 22.63, p, 0.01

Flavor
F(1,7) = 18.66, p, 0.01

Two-way interaction
F(1,7) = 7.16, p= 0.03

Post hoc Sidak’s test Initial Less Preferred: t(7) = 2.4, p= 0.09 Initial Preferred: t(7) = 4.13, p, 0.01
5G – Initial Less Preferred correlation Sham

r2 = 0.32, p= 0.14
BLA lesion
r2 = 0.38, p= 0.1

5H – Initial Preferred correlation Sham
r2 = 0.60, p= 0.02

BLA lesion
r2 = 0.52, p= 0.04

Figure 5 Additional analyses: sham vs BLA lesion
Preference ratio

Post hoc Sidak’s test Pretraining: t(28) = 0.54, p= 0.83 Post-training: t(28) = 3.70, p, 0.01
Reward consumption
Initial Preferred
Two-way mixed-effects model

Training
F(1,14) = 21.58, p, 0.001

Treatment
F(1,14) = 7.82, p= 0.01

Two-way interaction
F(1,14) = 4.62, p, 0.05

Post hoc Sidak’s test Pretraining: t(28) = 3.40, p= 0.17 Post-training: t(28) = 1.77, p, 0.01
Initial Less Preferred
Two-way mixed-effects model

Training
F(1,14) = 39.22, p, 0.0001

Treatment
F(1,14) = 3.06, p= 0.10

Two-way interaction
F(1,14) = 11.96, p, 0.01

Post hoc Sidak’s test Pretraining: t(28) = 0.49, p= 0.86 Post-training: t(28) = 3.39, p, 0.01
Total food consumption
Two-way mixed-effects model

Training
F(1,14) = 80.09, p, 0.0001

Treatment
F(1,14) = 4.23, p= 0.06

Two-way interaction
F(1,14) = 0.04, p= 0.84

Post hoc Sidak’s test Pretraining: t(28) = 1.98, p= 0.11 Post-training: t(28) = 1.83, p= 0.15
Figure 5 Additional analyses: effect of Different
Delay training vs Figure 1 Same Delay training

Preference ratio
Sham vs Same Delay
Two-way mixed-effects model

Training
F(1,26) = 28.99, p, 0.0001

Delay Treatment
F(1,26) = 5.21, p= 0.03

Two-way interaction
F(1,26) = 17.54, p= 0.0003

BLA lesion vs Same Delay
Two-way mixed-effects model

Training
F(1,13) = 2.30, p= 0.15

Delay Treatment
F(1,13) = 0.16, p= 0.69

Two-way interaction
F(1,13) = 0.06, p= 0.81
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higher reward rate (Logan, 1965; Ainslie, 1974; Rodriguez and
Logue, 1988; Evenden and Ryan, 1996; Richards et al., 1997;
Green and Myerson, 2004; Peterson et al., 2015; Vanderveldt et
al., 2016). We note that the change in reward preference is
likely not mediated by differences in satiety between training ses-
sions since rats underwent only a single training session per day
and the same number of food pellets were delivered in each
training session. Differences in reward expectation are not medi-
ating the change in preference since there was no difference in an-
ticipatory responding between Long and Short Delay sessions.
Furthermore, in control experiments, we found that rats maintained

their initial reward preference when the delay to the reward delivery
was held constant for both flavors, which illustrates that rats are
appropriately discriminating between the reward options within
this task design.

Our findings demonstrate that the impact of temporal delays
on enhancing the preference for a particular reward depends on
whether that option was initially preferred or not. We identified
an asymmetry in which temporal delays only increase the prefer-
ence for the initial less desirable option. Rats did not exhibit a
stronger preference for the Initial Preferred option when this
reward was delivered after short delays. Rather, rats trained in
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Figure 6. The RSC is required for the enhanced preference for the Initial Less Preferred reward delivered after long delays. A, Training schematic. B, Top, The extent of RSC lesions across
four coronal planes with the anterior distance from bregma (millimeters) indicated. Bottom, Representative RSC lesion. C, Anticipatory head entries into the food port in sham or RSC-lesioned
rats. D, Latency to make a head entry into the food port after a reward is delivered during training sessions in sham or RSC-lesioned rats. E, Preference ratio in sham (left) or RSC-lesioned
(right) rats. F, Reward consumption for each flavor during the preference tests in sham (left) or RSC-lesioned (right) rats. G, H, Linear regression relating the change in food consumption as a
function of the change in the preference ratio. *p, 0.05. **p, 0.01. ***p, 0.001. ****p, 0.0001.
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this manner increased their preference for the Initial Less
Preferred option that was delivered after long delays. We propose
these results reflect the impact of sunk costs on reward prefer-
ence (Clement et al., 2000; Marsh and Kacelnik, 2002; Friedrich
and Zentall, 2004; Navarro and Fantino, 2005; Alessandri et al.,
2008). Human studies have identified behavioral consequences
from a variety of sunk costs that are imposed on the subject,
including embarrassment, political, personal, and financial,
although these costs are challenging to model in animals
(Aronson and Mills, 1959; Staw, 1976; Strube, 1988; Haller and
Schwabe, 2014; Fujino et al., 2016). Recent studies have exam-
ined the behavioral impact of sunk temporal costs using a
choice-based foraging task (Wikenheiser et al., 2013; Abram et
al., 2016; Sweis et al., 2018). In this foraging task, choosing one
option comes at the expense of a potential alternative outcome,
so one cannot determine whether sunk costs increase the value
of the chosen outcome and/or decrease the value of the

alternative outcome. Our behavioral paradigm allowed us to
determine that a robust change in preference toward an Initial
Less Preferred reward delivered after long temporal delays was a
product of changes in consumption of both rewards: increased
consumption of the Initial Less Preferred reward as well as
decreased consumption of the Initial Preferred reward. Together,
these findings indicate that a high temporal cost before the deliv-
ery of a less desirable reward can positively impact the value of
that reward as well as negatively impact the value of the alterna-
tive option.

Correlative studies have linked neural activity to the behav-
ioral effects of sunk costs (Fujino et al., 2016, 2018). Here we
aimed to elucidate the neural systems that are required for sunk
temporal costs to enhance the preference for an initially less de-
sirable reward. We concentrated on brain regions involved with
timing, reward valuation, and reward learning. Dopamine signals
reflect changes in preference induced by state-specific satiety

Table 6. Statistical analyses for Figure 6

Figure 6
(RSC lesion: n= 8 males; sham: n= 8 males)

6C – Anticipatory head entries
Three-way mixed-effects model Session

F(3.09,43.21) = 14.14, p, 0.0001
Treatment
F(1,53) = 0.10, p= 0.75

Delay
F(1,14) = 0.06, p= 0.81

Session � Treatment
F(4,53) = 0.53, p= 0.72

Session � Delay
F(2.21,29.32) = 2.29, p= 0.11

Treatment � Delay
F(1,53) = 5.04, p= 0.03

Three-way interaction
F(4,53) = 2.44, p= 0.06

6D – Latency to pellet
Three-way mixed-effects model Session

F(4,56) = 43.99, p, 0.0001
Treatment
F(1,53) = 0.18, p= 0.68

Delay
F(1,14) = 0.59, p= 0.45

Session � Treatment
F(4,53) = 0.88, p= 0.48

Session � Delay
F(4,53) = 0.62, p= 0.65

Treatment � Delay
F(1,53) = 1.64, p= 0.22

Three-way interaction
F(4,53) = 1.26, p= 0.30

6E – Preference ratio
Two-way mixed-effects model Training

F(1,14) = 10.64, p, 0.01
Treatment
F(1,14) = 12.69, p, 0.01

Two-way interaction
F(1,14) = 17.36, p= 0.001

Post hoc Sidak’s test Sham: t(14) = 5.25, p = 0.0002 RSC lesion: t(14) = 0.64, p = 0.78
6F – Reward consumption

Sham
Two-way mixed-effects model

Training
F(1,7) = 19.71, p, 0.01

Flavor
F(1,7) = 4.05, p= 0.08

Two-way interaction
F(1,7) = 6.12, p= 0.04

Post hoc Sidak’s test Initial Less Preferred: t(7) = 4.31, p, 0.01 Initial Preferred: t(7) = 2.95, p= 0.04
RSC lesion
Two-way mixed-effects model

Training
F(1,7) = 80.05, p, 0.0001

Flavor
F(1,7) = 153.8, p, 0.0001

Two-way interaction
F(1,7) = 74.52, p, 0.0001

Post hoc Sidak’s test Initial Less Preferred: t(7) = 0.28, p= 0.95 Initial Preferred: t(7) = 10.63, p, 0.0001
6G – Initial Less Preferred correlation Sham

r2 = 0.02, p= 0.74
RSC lesion
r2 = 0.36, p= 0.11

6H – Initial Preferred correlation Sham
r2 = 0.52, p= 0.04

RSC lesion
r2 = 0.87, p, 0.001

Figure 6 Additional analyses: sham vs RSC lesion
Preference ratio

Post hoc Sidak’s test Pretraining: t(28) = 0.27, p= 0.96 Post-training: t(28) = 5.37, p, 0.0001
Reward consumption
Initial Preferred
Two-way mixed-effects model

Training
F(1,14) = 109.7, p, 0.0001

Treatment
F(1,14) = 35.19, p, 0.0001

Two-way interaction
F(1,14) = 51.74, p, 0.0001

Post hoc Sidak’s test Pretraining: t(28) = 2.98, p= 0.01 Post-training: t(28) = 8.10, p, 0.0001
Initial Less Preferred
Two-way mixed-effects model

Training
F(1,14) = 13.85, p, 0.01

Treatment
F(1,14) = 6.65, p= 0.02

Two-way interaction
F(1,14) = 11.61, p, 0.01

Post hoc Sidak’s test Pretraining: t(28) = 0.31, p= 0.94 Post-training: t(28) = 4.19, p, 0.001
Total food consumption
Two-way mixed-effects model

Training
F(1,14) = 102.0, p, 0.0001

Treatment
F(1,14) = 18.21, p, 0.001

Two-way interaction
F(1,14) = 7.15, p= 0.02

Post hoc Sidak’s test Pretraining: t(28) = 2.70, p= 0.02 Post-training: t(28) = 5.00, p, 0.0001
Figure 6 Additional analyses: effect of Different
Delay training vs Figure 1 Same Delay training

Preference ratio
Sham vs Same Delay
Two-way mixed-effects model

Training
F(1,13) = 15.88, p= 0.002

Delay Treatment
F(1,13) = 1.94, p= 0.19

Two-way interaction
F(1,13) = 7.33, p= 0.02

RSC lesion vs Same Delay
Two-way mixed-effects model

Training
F(1,26) = 0.07, p= 0.79

Delay Treatment
F(1,26) = 6.94, p= 0.01

Two-way interaction
F(1,26) = 1.47, p= 0.24
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(Cone et al., 2016; Papageorgiou et al., 2016). Additionally, dopa-
mine receptor antagonism impairs preference changes arising
from conditioned taste aversion (Fenu et al., 2001). In our task,
we found that antagonizing dopamine receptors during training
sessions increased the latency to retrieve the reward and
decreased anticipatory head entries into the food port, consistent
with dopamine’s role in regulating both locomotor activity and
the acquisition of anticipatory responding (Pitts and Horvitz,
2000; Flagel et al., 2011; Trost and Hauber, 2014). Despite the
motoric effects of dopamine receptor antagonism during training
sessions, rats still displayed enhanced preference for the initial
less desirable reward. Therefore, behavioral performance during
training sessions is not linked to a subsequent change in reward
preference.

OFC lesions failed to prevent changes in reward preference,
which agrees with previous reports that lesions to the OFC did
not alter outcome preference or behavioral flexibility (Keiflin
et al., 2013; Rudebeck et al., 2013). However, prior research
has found that OFC lesions impair the ability to update
choices following selective satiation (Rhodes and Murray,
2013). In addition, OFC lesions do not prevent changes in
preference induced by taste aversion but can disrupt devalu-
ation of the associated cue (Gallagher et al., 1999). While the
dopamine system and the OFC are active participants in
other forms of preference changes, our findings suggest these
two systems are not involved with sunk temporal costs
enhancing the preference for an initially less desirable
reward option.

Figure 7. Relating the change in preference to the change in the food consumption. A, Change in the preference ratio across all rats that underwent the Different Delay training sessions:
Initial Less Preferred after long delays. Color overlays represent a mild increase in preference toward the Initial Preferred reward (orange; change in the preference ratio, 0), a mild increase
in preference toward the Initial Less Preferred reward (light blue; change in the preference ratio between 0 and 0.4), and a robust increase in preference toward the Initial Less Preferred reward
(dark blue; change in the preference ratio. 0.4). B, Change in the food consumption in rats that displayed a mild increase in preference toward the Initial Preferred reward. C, Change in the
food consumption in rats that displayed a mild increase in preference toward the Initial Less Preferred reward. D, Change in the food consumption in rats that displayed a robust increase in
preference toward the Initial Less Preferred reward. *p, 0.05, ****p, 0.0001.

Table 7. Statistical analyses for Figure 7

Figure 7

Two-way mixed-effects model Flavor
F(1,85) = 3.89, p= 0.05

Change in preference
F(2,85) = 5.78, p, 0.01

Two-way interaction
F(2,85) = 116.2, p, 0.0001

Post hoc Sidak’s test Orange
t(85) = 10.61, p, 0.0001

Light blue
t(85) = 0.95, p = 0.72

Dark blue
t(85) = 10.94, p, 0.0001

7B – Orange
One-sample t test Change in Initial Less Preferred consumption

t(15) = 0.69, p= 0.50
Change in Initial Preferred consumption
t(15) = 8.39, p, 0.0001

7C – Light blue
One-sample t test Change in Initial Less Preferred consumption

t(44) = 88.88, p, 0.0001
Change in Initial Preferred consumption
t(44) = 5.47, p, 0.0001

7D – Dark blue
One-sample t test Change in Initial Less Preferred consumption

t(26) = 16.99, p, 0.0001
Change in Initial Preferred consumption
t(26) = 2.23, p= 0.04
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Our results demonstrate that lesioning the BLA before train-
ing sessions prevented temporal costs from influencing changes
in preference. Previous studies have implicated BLA neurons in
reward learning and memory formation (Namburi et al., 2015;
Morse et al., 2020). The BLA also has a role in reward preference
as studies demonstrate the BLA maintains representations of
appetitive and economic value (Cador et al., 1989; Winstanley et
al., 2004; Leathers and Olson, 2017). BLA neurons additionally
encode the value of a chosen reward and inactivating the BLA
decreased choice for a more preferred option (Hart and
Izquierdo, 2017; Jezzini and Padoa-Schioppa, 2020). Moreover,
BLA inactivation impairs choice following reinforcer devaluation
(West et al., 2012; Hart and Izquierdo, 2017). Our findings
coupled with prior work collectively highlight a critical role for
the BLA in updating reward value.

The RSC has been well studied for its contributions to mem-
ory formation, spatial navigation, and timing (Vann et al., 2009;
Todd et al., 2015, 2019; Miller et al., 2019; Trask et al., 2021).
However, increasing evidence illustrates that the RSC also con-
tains reward-responsive neurons that encode reward value
(Vedder et al., 2017; Hattori et al., 2019; Fischer et al., 2020).
Furthermore, inactivation of the RSC impaired the ability to
adapt behavior based on the reward history (Hattori et al., 2019).
Consistent with the RSC’s role in reward-based behavior, RSC
lesions before training sessions prevented the change in prefer-
ence induced by past temporal costs. RSC lesions also differen-
tially altered the anticipatory responding between training
sessions. However, as discussed above, the behavioral responses
during training sessions are not predictive of changes in reward
preference.

Together, we find that lesions of the BLA or the RSC pre-
vented how temporal delays increase the preference for an ini-
tially less desirable option. However, it is possible that the role of
the BLA and RSC extends beyond our behavioral task and that
these regions instead play a more general role in updating reward
value and preference. Our data indicate the presence of a circuit
involving the BLA and RSC to update reward value. In support,
the BLA sends direct projections to the RSC (Buckwalter et al.,
2008; Hintiryan et al., 2021). However, further studies are needed
to determine whether the BLA and RSC are responsible for
updating preference (during training sessions) and/or expressing
preference changes (during the free-feeding test). Similar behav-
ioral effects were observed across male and female rats, although
the lesion experiments were only performed in male rats. Future
work will be needed to verify the role of the BLA and RSC in
changing reward preference in female rats. Collectively, our data
highlight a previously unappreciated role for the BLA and RSC
in mediating enhanced preference for a less desirable reward that
follows a long temporal delay.
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