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Glutamatergic synapses are key cellular sites where cocaine experience creates memory traces that subsequently promote co-
caine craving and seeking. In addition to making across-the-board synaptic adaptations, cocaine experience also generates a
discrete population of new synapses that selectively encode cocaine memories. These new synapses are glutamatergic synapses
that lack functionally stable AMPARs, often referred to as AMPAR-silent synapses or, simply, silent synapses. They are gener-
ated de novo in the NAc by cocaine experience. After drug withdrawal, some of these synapses mature by recruiting AMPARs,
contributing to the consolidation of cocaine-associated memory. After cue-induced retrieval of cocaine memories, matured silent
synapses alternate between two dynamic states (AMPAR-absent vs AMPAR-containing) that correspond with the behavioral
manifestations of destabilization and reconsolidation of these memories. Here, we review the molecular mechanisms underlying
silent synapse dynamics during behavior, discuss their contributions to circuit remodeling, and analyze their role in cocaine-
memory-driven behaviors. We also propose several mechanisms through which silent synapses can form neuronal ensembles as
well as cross-region circuit engrams for cocaine-specific behaviors. These perspectives lead to our hypothesis that cocaine-gener-
ated silent synapses stand as a distinct set of synaptic substrates encoding key aspects of cocaine memory that drive cocaine
relapse.

Introduction
Substance use disorder (SUD) is an acquired behavioral state
that develops through repeated substance experience. While hav-
ing substantial pathologic features, the development and mainte-
nance of SUD share many key plasticity mechanisms and exhibit
memory features that are commonly observed in learning and
memory processes, including memory acquisition, consolidation,
retrieval-induced destabilization, and reconsolidation (Torregrossa
and Taylor, 2013; Everitt and Robbins, 2016). Indeed, SUD has
been conceptualized as an extreme form of memory such that the
underlying plasticity substrates can be targeted to decrease drug
seeking and taking (Hyman et al., 2006).

In an attempt to identify neural underpinnings of SUD, inten-
sive prior studies have identified several critical forms of drug-
induced neural adaptations that promote the development of
drug-associated behaviors (Wolf, 2016; Wright and Dong, 2020).
Despite much exciting progress, our understanding has been
partially limited to changes occurring in neuronal and synaptic
populations that are broadly implicated in reward response, but
not necessarily unique to SUD. For example, it has been shown
that, following cocaine self-administration, synaptic potentiation
is detected within the majority of hippocampal projections to
medium spiny neurons (MSNs) that express D1 dopamine
receptors (D1-MSNs) in the NAc, and this potentiation pro-
motes cocaine seeking after cocaine withdrawal (Pascoli et al.,

2014; Zhou et al., 2019). However, potentiating the majority of
hippocampal inputs to NAc D1-MSNs also promotes seeking of
nondrug rewards (LeGates et al., 2018). Are there any neuronal sub-
strates or synaptic alterations that are unique to drug experience?

Recent studies have identified a population of immature glu-
tamatergic synapses, namely, AMPAR-silent synapses, which are
generated de novo within the NAc after cocaine administration
(Y. H. Huang et al., 2009; J. Wang et al., 2021a) (Fig. 1). After
drug withdrawal, these synapses exhibit three major dynamic
changes corresponding to the consolidation, retrieval-induced
destabilization, and reconsolidation of cocaine memories (Lee et
al., 2013; Ma et al., 2014; Wright et al., 2020). Although new syn-
apses are constitutively generated through metabolic turnover or
by other experiences, here we discuss the possibility that cocaine-
generated synapses represent a discrete population of neuronal
substrates that encode cocaine-associated memories. We will
make a conceptual generalization by exploring how a unique set
of nascent synapses is generated by a particular experience to
contribute to the formation of neuronal engrams and unique cir-
cuit activity patterns corresponding to this particular experience.

Memory encoding: role of synapses and synaptogenesis
A prominent goal of SUD neuroscientists is to determine the
highly specific neuronal substrates that underlie drug-associated
memories. Hope arises from the Engram Hypothesis, which pro-
poses that a given memory is encoded by a select set of persistent
structural and functional changes in the brain, termed the
engram (Semon, 1921; Josselyn and Tonegawa, 2020). Synaptic
connections between neurons have long been hypothesized to
encode such memory traces through experience-induced plastic-
ity (Ramon y Cajal, 1894; Hebb, 1949). Experience-induced syn-
aptic plasticity can be expressed as changes in the weight of
preexisting synapses without changing circuit connectivity or,
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alternatively, addition/elimination of synapses that results in cir-
cuit rewiring (Chklovskii et al., 2004). In either case, if unique to
an experience, these synapses may bear a “synaptic engram”
(Josselyn et al., 2015). On the other hand, sparsely distributed
neurons that are selectively activated during formation or re-
trieval of a memory can bear a “neuronal engram” (Josselyn et
al., 2015; Tonegawa et al., 2015). To capture engram neurons
and synapses experimentally, many laboratories take advantage
of activity-dependent biomarkers, with the assumption that the
engram substrates would exhibit increased activities during
memory formation and retrieval. Consequently, a relatively small
number of engram neurons and synapses are tagged and defined
among their numerous peers in response to a specific experience
(Josselyn et al., 2015; Tonegawa et al., 2015). These synaptic and
neuronal engrams are not mutually exclusive but are, at least in
part, linked mechanistically. For example, some neurons can be
“tuned” by remodeled synaptic inputs to selectively respond to a
specific experience, thus becoming engram neurons. In this case,
synaptic engrams may serve as the subcellular basis for neuronal
engrams.

It has been demonstrated convincingly that selective inhibi-
tion of neurons in a neuronal engram (i.e., engram neurons) for
a memory disrupts the behavioral expression of this memory
(Tonegawa et al., 2015; Josselyn and Tonegawa, 2020). However,
some neurons in one neuronal ensemble may also participate in
another neuronal ensemble that encodes a different memory

(Cai et al., 2016; Rashid et al., 2016; Yokose et al., 2017; Abdou et
al., 2018). Such an overlap provides a mechanism for memory
linkage or generalization (Cai et al., 2016; Yokose et al., 2017),
but it also indicates the likelihood that targeting individual
engram neurons may simultaneously interfere with nontargeted
memories. Indeed, it is the temporal activities, rather than their
physical existence, of engram neurons that express the memory
for a neuronal engram. Specifically, neurons can participate in
multiple engrams, but at a given time (e.g., during memory
recall), activity of neurons within a pretuned neuronal engram
supports a unique network activity pattern. The uniquely pat-
terned temporal circuit dynamics are thought to be a circuit rep-
resentation for a specific memory (Sussillo, 2014; Yuste, 2015;
Kyriazi et al., 2018; Ruff et al., 2018; Gonzalez et al., 2019; Ju and
Bassett, 2020). As such, the synaptic engram, neuronal engram,
and circuit dynamics can be regarded as neural manifestations of
the same memory perceived from three different anatomic
angles, with synapses as the key subcellular basis defining the cir-
cuit connectivity that orchestrates the temporal dynamics of en-
semble neurons and circuit activities.

In theory, generation of new memory-encoding circuit-activ-
ity patterns can be achieved by modification of the weight of pre-
existing synapses without changing the synaptic connectivity of
the circuit. For example, experience-induced LTP and LTD may
preferentially occur at different synapse populations to redefine
the circuit activity dynamics. However, the fixed synaptic
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Figure 1. Cocaine-induced generation of silent synapses in the NAc. A, Schematic depiction of synaptogenesis in an MSN within the NAc during and following cocaine self-administration.
During self-administration training, nascent, immature synapses are generated along the dendritic arbor, forming new connections. During withdrawal, some of these synapses mature into
functional synapses, whereas others are presumably pruned away. Numbers correspond to the stages depicted in B. B, Illustration of the stages of cocaine-induced synapse generation and mat-
uration. During cocaine self-administration, synaptogenic processes are triggered. This leads to the generation of new synapses, which contain both GluN2B-containing NMDARs and GluA2-con-
taining AMPARs. These AMPARs, however, are highly labile and are soon internalized, resulting in silent synapses containing only NMDARs. During early withdrawal, GluN2B-containing
NMDARs are replaced with GluN2A-containing NMDARs. This is critical for the subsequent functional maturation of the synapse mediated by the recruitment of CP-AMPARs to the synapse.
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connectivity also entails a “range constraint” on a circuit and
limits the encoding capacity (Sadtler et al., 2014; Oby et al.,
2019). This constraint can be overcome at least in part by experi-
ence-dependent modification of the number of synapses. Indeed,
experience-dependent synapse formation and elimination have
been associated with the emergence of new circuit activity pat-
terns (Peters et al., 2014) and formation of new memories (Yang
et al., 2009; Fu et al., 2012; Lai et al., 2012; Parkhurst et al., 2013;
Chen et al., 2015), including memories associated with SUD
(Russo et al., 2010; Muñoz-Cuevas et al., 2013). Formation of
neuronal engrams is also associated with synaptogenesis (Ryan et
al., 2015; Choi et al., 2018), and reactivation of engram neurons
during memory retrieval is dependent on these new synaptic
connections (Ryan et al., 2015). Furthermore, synapses generated
by different experiences may coexist on the same neurons but
encode distinct memories, such that disrupting the function of
one synapse population impairs only its associated memory
(Yang et al., 2014; Cichon and Gan, 2015; Hayashi-Takagi et al.,
2015). Such a compartmentalized arrangement allows different
synaptic populations to embed different memory traces in the
same neurons (Losonczy et al., 2008; Cichon and Gan, 2015),
such that the same neurons may contribute to multiple memo-
ries (Abdou et al., 2018).

The above literature analysis supports the hypothesis that a
memory can be selectively encoded in a specific synapse popula-
tion, or a synaptic engram, that is generated de novo during
learning. This hypothesis is similar to the previously proposed
synaptic tagging hypothesis (Chklovskii et al., 2004; Rogerson et
al., 2014; Holtmaat and Caroni, 2016) but conceptualizes new
synapses generated by an experience as an independent synaptic
engram that encodes nonoverlapping memory traces. Such syn-
apses should have several key features: (1) they are generated by
a learning experience, (2) they contribute to subsequent memory
recall, and (3) changes in their functional state underlie the dy-
namics of a memory. Below, we review the features and mecha-
nisms of cocaine-generated silent synapses, followed by our
perspective of how these synapses may represent a synaptic
engram encoding specific aspects of cocaine memories.

Mechanisms and functions of cocaine-generated silent
synapses
Cocaine-induced generation of silent synapses
During brain development, immature glutamatergic synapses of-
ten contain only NMDARs without functionally stable AMPARs,
and are thus called AMPAR-silent synapses (Kerchner and
Nicoll, 2008). After development, synaptogenesis and silent syn-
apses decline to low levels (Durand et al., 1996; Petralia et al.,
1999), but the basic synaptogenic capacity remains throughout
adulthood to contribute to experience-induced synaptic remod-
eling (Holtmaat and Svoboda, 2009). Under certain learning con-
ditions, new glutamatergic synapses are generated in the adult
brain, and these, like nascent synapses during development, of-
ten have thin or filopodia-like postsynaptic structures initially
(Holtmaat et al., 2006; Knott et al., 2006), and then undergo
gradual enlargement, a process corresponding to functional mat-
uration via incorporation of AMPARs (Matsuzaki et al., 2004).
Similar generation of silent synapses is observed during fear con-
ditioning and likely other learning processes (Suvrathan et al.,
2013; W. Ito et al., 2015; Y. Wang et al., 2018; W. Ito and
Morozov, 2019). Thus, silent synapse-based synaptogenesis may
serve as a general, basic strategy for certain learning processes to
remodel related neural circuits during memory encoding.

Exposure to cocaine and other psychostimulants increases the
density of dendritic spines in NAc MSNs (Robinson and Kolb,
1997, 1999; Robinson et al., 2001), suggesting that synaptogenesis
occurs. Echoing these findings, cocaine experience induces gen-
eration of silent synapses in NAc MSNs (Y. H. Huang et al.,
2009; Koya et al., 2012; Lee et al., 2013; Whitaker et al., 2016)
(Fig. 1). Several features of these cocaine-generated silent synap-
ses are consistent with their being nascent, immature synapses:
(1) they are enriched in GluN2B-containing NMDARs (Y. H.
Huang et al., 2009; Brown et al., 2011;Wright et al., 2020), a hallmark
of immature glutamatergic synapses during development (Monyer et
al., 1994; Kirson and Yaari, 1996; Tovar and Westbrook, 1999); (2)
the majority of cocaine-generated silent synapses are not formed by
AMPAR internalization at preexisting synapses (Graziane et al.,
2016; Y. Q. Wang et al., 2021); (3) cocaine-induced generation of
silent synapses is tightly correlated with a selective increase in thin
and filopodia-like spines, whichmay represent immature glutamater-
gic synapses (Graziane et al., 2016; Wright et al., 2020); and (4) dis-
rupting astrocytic thrombospondin-a2d�1 signaling, a signaling
pathway that promotes synaptogenesis during brain development,
prevents both the generation of silent synapses and the increase in
spine density after cocaine experience (J. Wang et al., 2021a). These
results argue that cocaine-generated silent synapses are a discrete set
of new synapses related to cocaine experience.

The mechanisms governing experience-induced synaptogene-
sis in the adult brain are complex and incompletely understood
(Waites et al., 2005; Südhof, 2018). To date, several mechanistic
processes that have been characterized for generating silent syn-
apse in the adult brain are similar to those underlying synapto-
genesis during development (Dong and Nestler, 2014). A
prominent molecular mechanism is upregulation of the activity
of CREB and other transcriptional signaling pathways, which
promotes transcription of synaptogenic proteins (McClung and
Nestler, 2003) and drives generation of silent synapses (Marie et
al., 2005; Brown et al., 2011; Grueter et al., 2013; for thorough
reviews, see Dong and Nestler, 2014; Nestler and Lüscher, 2019).
Another cellular step is synaptic insertion of GluN2B-containing
NMDARs (Y. H. Huang et al., 2009; Y. Q. Wang et al., 2021), an
NMDAR subtype critically involved in synaptogenesis and silent
synapse generation during both development and adulthood
(Tovar and Westbrook, 1999; Nakayama et al., 2005; Gambrill
and Barria, 2011; Chung et al., 2017). Recent results suggest that
GluA2-containing AMPARs are inserted simultaneously with
GluN2B-NMDARs during initial synapse generation, but the
AMPARs are quickly internalized, resulting in an AMPAR-silent
state shortly after synaptogenesis (Y. Q. Wang et al., 2021). Such
a two-step process is again reminiscent of synaptogenesis during
development (Xiao et al., 2004; Groc et al., 2006). In addition to
neuronal mechanisms, cocaine-induced generation of silent syn-
apses requires an astrocyte-mediated synaptogenic signaling
pathway. Specifically, cocaine experience induces astrocytic
release of thrombospondin-2, which, in turn, activates its neuro-
nal receptor a2d�1, promoting silent synapse generation in the
NAc (J. Wang et al., 2021a). This and other astrocytic signaling
pathways have been critically implicated in synapse generation,
maintenance, and elimination during both development and
adulthood (Eroglu and Barres, 2010; Allen and Eroglu, 2017; J.
Wang et al., 2021b). Through localized activities, astrocyte proc-
esses can initiate and regulate synaptogenesis at specific dendritic
segments (Eroglu and Barres, 2010; Martín et al., 2015; Allen and
Eroglu, 2017; Martín-Fernández et al., 2017), and may even define
the location within a circuit where new synapses are formed.
These findings highlight that cocaine-induced generation of new
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synapses involves synaptogenic mechanisms normally used by the
developing brain.

While the majority of silent synapses generated after cocaine
experience are new, immature synapses, a portion of them origi-
nate from preexisting synapses after AMPAR internalization
(Y.D., unpublished data), and this synaptic weakening process
may eventually lead to synapse elimination. As another effective
means to restructure the circuit connectivity, it is not surprising
that experience-induced synapse elimination is also important
for memory formation (Yang et al., 2009; Chen et al., 2015; Li et
al., 2017). Related to this, morphine experience induces synapse
elimination in NAc D2-MSNs, whereas disrupting this elimina-
tion compromises the retention of morphine-conditioned place
preference, a reward conditioned spatial memory (Graziane et
al., 2016).

Maturation or elimination: “to be or not to be” of cocaine-gener-
ated synapses
After cocaine experience, silent synapses do not persist in the
AMPAR-silent state indefinitely but “disappear” after several
days of withdrawal (Y. H. Huang et al., 2009; Lee et al., 2013). In
general, nascent synapses have two possible fates: (1) to mature
and, thus, be unsilenced and incorporated into the circuit; or (2)
to be eliminated (Yang et al., 2009; Dong and Nestler, 2014). The
first scenario is supported by observations that the increase in
spine density following cocaine experience persists through with-
drawal periods; and importantly, it is accompanied by a conver-
sion of thin/filopodia-like spines to mushroom-like spines
(Graziane et al., 2016; Wright et al., 2020), suggesting synaptic
maturation. Furthermore, the disappearance of silent synapses
corresponds with an upregulation of AMPARs, specifically atypi-
cal, Ca21-permeable AMPARs (CP-AMPARs). Blocking CP-
AMPARs restores high levels of silent synapses after drug with-
drawal (Conrad et al., 2008; Lee et al., 2013; Wright et al., 2020).

Recent results have begun to reveal key mechanistic steps
during maturation of cocaine-generated silent synapses. First, it
appears that GluN2B-containing NMDARs regulate the pace of
maturation. During development, GluN2B-NMDARs at nascent
glutamatergic synapses inhibit AMPAR insertion, maintaining
the synapses in the AMPAR-silent state (Adesnik et al., 2008;
Gray et al., 2011). Subsequent synaptic maturation through
AMPAR stabilization coincides with a switch of NMDARs from
GluN2B- to GluN2A-containing subtypes (Monyer et al., 1994).
Mirroring this developmental process, GluN2B NMDARs at co-
caine-generated synapses are replaced with non-GluN2B, pre-
sumably GluN2A, NMDARs during early withdrawal from
cocaine (Y. H. Huang et al., 2009; Wright et al., 2020). This
replacement is required for the maturation of cocaine-generated
synapses, such that disrupting this replacement keeps cocaine-
generated synapses in the immature, silent state (Y. Q. Wang et
al., 2021). Second, recruitment and stabilization of AMPARs at
newly matured silent synapses during cocaine withdrawal may
require coordinative interactions between postsynaptic density
(PSD) scaffold proteins. Scaffold proteins, particularly PSD-95,
stabilize synaptic AMPARs within the PSD, whereas genetic de-
letion of PSD-95 results in high basal levels of silent synapses in
the adult brain (El-Husseini et al., 2000; Béïque et al., 2006;
Ehrlich et al., 2007; Cane et al., 2014; Meyer et al., 2014; X.
Huang et al., 2015; Favaro et al., 2018). Upon PSD-95 knockout
or knockdown, cocaine experience still generates silent synapses
in NAc MSNs, suggesting intact generation processes. However,
these synapses do not mature after prolonged drug withdrawal,

indicating failed insertion and/or stabilization of AMPARs
(Shukla et al., 2017).

While a large portion of cocaine-generated silent synapses
mature after drug withdrawal, it is speculated that some of them
do not (Lee et al., 2013). This is not surprising because a similar
phenomenon has been documented in the cortex, in which a
portion of experience-generated synapses do not mature but are
eliminated eventually (Yang et al., 2009; Li et al., 2017). Thus,
selection mechanisms must exist for preservation versus elimina-
tion of these synapses. One potential mechanism involves activ-
ity-dependent synaptic maturation. It is believed that new
synapse generation tends to be excessive, and only those that are
frequently used eventually mature and are integrated into the cir-
cuit (Katz and Shatz, 1996; Cohen-Cory, 2002; Waites et al.,
2005; Stephan et al., 2012; Holtmaat and Caroni, 2016). In this
scenario, synapse generation has a degree of randomness, allow-
ing sufficient connection opportunities, while maturation refines
and specifies the circuit connectivity that supports consolidated/
persistent memories.

However, memories are typically consolidated in the absence
of direct exposure to related experience (Dudai et al., 2015;
Klinzing et al., 2019). What activities drive synaptic maturation
during such periods of quiescence? One possibility is the replay
of patterned circuit activity that represents an experience. In the
hippocampus, neuronal ensembles that are activated during
learning are often reactivated to replay their temporal dynamics
at later times in the absence of new learning (Ólafsdóttir et al.,
2018), and this replay contributes to memory consolidation
(Girardeau et al., 2009; Jadhav et al., 2012). Such replay may pro-
vide essential activity signals for selecting relevant synapses for
maturation. In line with this viewpoint, it has been shown in the
cortex that reactivation of a dendrite promotes the stabilization
of nascent synapses on that dendrite (Cichon and Gan, 2015),
and reactivation of a neuronal ensemble strengthens the func-
tional connectivity between ensemble neurons to improve the
circuit representation of the memory (Sugden et al., 2020). In the
NAc, the neuronal ensembles related to rewarding experiences
display reactivation dynamics during periods of quiescence
(Pennartz et al., 2004; Lansink et al., 2008), suggesting the exis-
tence of similar replay mechanisms, which may contribute to the
maturation of silent synapses and consolidation of drug-associ-
ated memories during withdrawal periods after cocaine self-
administration training.

In addition to experience-dependent activity, homeostatic
plasticity may contribute to synaptic maturation and circuit
remodeling (Turrigiano and Nelson, 2004). By mobilizing a
complex set of mechanisms, homeostatic plasticity regulates syn-
aptic strength and intrinsic membrane excitability of neurons to
maintain an output near a set point (Turrigiano, 2008; Davis,
2013). A form of homeostatic plasticity, termed synapse-mem-
brane homeostatic crosstalk, has been characterized in NAc
MSNs, through which the excitatory synaptic input and mem-
brane excitability of MSNs are homeostatically adjusted to func-
tionally compensate for changes in one or the other (Ishikawa et
al., 2009). After short-term withdrawal from cocaine, upregulation
of GluN2B NMDARs at cocaine-generated silent synapses pro-
duces a false signal of increased synaptic input that induces syn-
apse-to-membrane homeostatic plasticity, resulting in decreased
membrane excitability of NAc MSNs (J. Wang et al., 2018). This
membrane change subsequently induces another round of mem-
brane-to-synapse homeostatic plasticity, resulting in strengthening
of excitatory synapses through insertion of CP-AMPARs (J. Wang
et al., 2018). Such a large-scale upregulation of CP-AMPARs
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suggests a rather nonselective maturation of cocaine-generated
synapses. This potential feature may contribute to the substantial
and persistent increase in spine density after drug exposure, which
is not typical for other memories but potentially critical for the
robustness of cocaine-associated memories.

Dynamics of cocaine-generated synapses in cocaine memories
Cocaine-associated memories are multifaceted, containing infor-
mation related to unconditioned responses, contextual and dis-
crete cues, value, and actions. Cocaine-generated silent synapses
and the resulting circuit remodeling contribute to several, but
not all, aspects of cocaine-associated memories. Preventing co-
caine-induced generation of silent synapses in the NAc does not
prevent the acquisition of cocaine self-administration, suggesting
that NAc silent synapses are not involved in unconditioned stim-
ulus-driven instrumental learning (J. Wang et al., 2021a). This is
not surprising since NAc lesions do not prevent the acquisition
of cocaine self-administration (R. Ito et al., 2004), nor instru-
mental learning during other goal-directed behaviors (Corbit et
al., 2001; Jonkman and Everitt, 2011). Instead, cocaine-generated
NAc synapses may contribute to conditioned associations, par-
ticularly associations between conditioned stimuli and behavioral
outcomes (Goldstein et al., 2012; West and Carelli, 2016; Gmaz
et al., 2018). Supporting this viewpoint, animals trained in cue-
conditioned self-administration exhibit robust cue-induced co-
caine seeking after prolonged drug withdrawal, and preventing
NAc silent synapse generation during self-administration or
weakening these synapses after their maturation during with-
drawal impairs cue-induced cocaine seeking (Lee et al., 2013; Ma
et al., 2014; Wright et al., 2020; J. Wang et al., 2021a).
Furthermore, these manipulations do not affect the learning that
extinguishes cocaine seeking in the absence of conditioned cues,
nor the general motivation to obtain cocaine (J. Wang et al.,
2021a), further narrowing in on cue-conditioned associations as
the key aspect of cocaine memories that cocaine-generated NAc
synapses may encode.

NAc MSNs receive convergent glutamatergic projections
from many limbic and paralimbic areas (Sesack and Grace, 2010;
Xia et al., 2020). Cocaine-generated silent synapses have been
detected in projections from all the brain regions examined thus
far, including the BLA, prelimbic and infralimbic PFC, and para-
ventricular nucleus of the thalamus (Lee et al., 2013; Ma et al.,
2014; Neumann et al., 2016), and may be present in projections
from other brain regions, such as the hippocampus, which have
not yet been investigated. Accumulating evidence suggests that
cocaine-generated synapses in projections from different brain
regions contribute differentially to cocaine-related behaviors. For
example, BLA and prelimbic silent synapses promote cue-
induced cocaine seeking, whereas infralimbic silent synapses
suppress this behavior (Lee et al., 2013; Ma et al., 2014). These
results raise the possibility that cocaine-generated synapses
within NAc afferents from different brain regions transmit
different information, such as discrete or spatial cues, to the
same NAc MSNs to differentially regulate behavior. Thus, co-
caine-generated synapses dispersed in different afferents may
collectively form a synaptic engram that encodes a broader, mul-
tifaceted representation of the cocaine experience.

Memories are not static, but highly dynamic. For example,
consolidated memories become destabilized and susceptible to
modification on reactivation, and then restabilize through a
reconsolidation process (Tronson and Taylor, 2007; Torregrossa
and Taylor, 2013). If memories are indeed encoded in synaptic
and neuronal engrams as theorized, the engram neurons and

synapses would be expected to exhibit dynamic changes corre-
sponding to these memory dynamics. Such functional dynamics
of cocaine-generated NAc synapses are observed. Specifically, af-
ter formation and consolidation of cue-associated cocaine mem-
ories following withdrawal from cocaine self-administration, the
already mature synapses are transiently resilenced on reactiva-
tion of cocaine memories, via internalization of CP-AMPARs;
the synapses then mature again during the period of memory
reconsolidation (Wright et al., 2020). This rematuration is essen-
tial for the reconsolidation of cue-associated cocaine memories,
as preventing rematuration during the destabilization period
impairs subsequent cue-induced cocaine seeking (Wright et al.,
2020). Thus, the functional states of cocaine-generated synapses
contribute to the dynamics of cocaine memories. Similar dynam-
ics of AMPAR trafficking are observed during destabilization
and reconsolidation of other types of memories (Rao-Ruiz et al.,
2011), suggesting that the synaptic dynamics are a common
mechanism underlying memory dynamics. Theoretically, resil-
encing of memory-encoding synapses provides an opportunity
for certain synapses to be selected for rematuration and others to
be pruned away, with the redefined circuit connectivity updating
the memory content.

Another important phenomenon revealed by this line of stud-
ies is the dissociation between the functional state of experience-
generated synapses and the behavioral expression of memory.
During the 1 h testing of cue-induced cocaine seeking, which
measures the behavioral expression of cue-associated cocaine
memories, cue reexposure resilences cocaine-generated NAc syn-
apses instantly (,10min), but high levels of cocaine seeking per-
sist beyond this initial 10min and last throughout the testing
(Wright et al., 2020). A similar dissociation is observed in the be-
havioral expression of fear memories, in which cue-conditioned
freezing persists throughout the memory destabilization window,
despite the AMPAR internalization-mediated synaptic weakening
(Monfils et al., 2009; Rao-Ruiz et al., 2011). However, if cocaine-
generated synapses are resilenced before memory reactivation,
subsequent cue-induced cocaine seeking is impaired (Wright et
al., 2020). These results suggest that cocaine-generated synapses
are key substrates for the storage and/or reactivation of cocaine
memories, but once the memories are reactivated, behavioral
expression is maintained by an independent set of mechanisms. It
remains unknown what these mechanisms are, but one possibility
is that, once the memory-encoding neural substrates are acti-
vated, the resulting circuit dynamics are self-sustaining, sup-
porting the ongoing behavior. Alternatively, other transient
adaptations may compensate for the weakening of encoding
neural substrates to support the ongoing behavior. Such
“compensatory” adaptations are detected in the NAc as tran-
sient potentiation of potentially non–cocaine-generated glu-
tamatergic synapses during cue-induced cocaine seeking
(Gipson et al., 2013), as well as in the hippocampus as a tran-
sient increase in the membrane excitability of engram neu-
rons following memory retrieval (Pignatelli et al., 2018).
Regardless of the mechanisms, this division of labor allows
memory encoding substrates to be modified without sacrific-
ing the ongoing behavior, and thus has adaptive advantages.

A synaptic substrate for cocaine memories
The concept that memories are encoded by a select population of
synapses, or a synaptic engram, has been elaborated in various
forms (Chklovskii et al., 2004; Rogerson et al., 2014; Holtmaat
and Caroni, 2016). However, it is technically challenging to iden-
tify and manipulate such a select set of synapses among large
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synapse populations. By taking advantage of their unique cellular
features, targetable generation mechanisms, and robust behav-
ioral correlates, investigating cocaine-generated synapses pro-
vides a compelling case that cocaine-generated synapses form a
synaptic engram to encode aspects of cocaine memories.
However, there still remains much to consider regarding how
such synaptic engrams contribute to the circuit dynamics that
support long-lasting memories.

Theoretical considerations of synaptic engrams
A key form of experience-dependent synaptic plasticity is
achieved by modification of the weight at preexisting synapses.
Through LTP, LTD, or other forms of weight changes at synap-
ses, select routes of informational flow within the preexisting cir-
cuit can be strengthened or weakened, redefining the circuit
activity dynamics. However, studies of artificial neural networks
predict that such weight changes alone do not provide sufficient
capacity to encode multiple memories over extended periods of
time (French, 1999; Fusi and Abbott, 2007). This is partially
because of spontaneous fluctuation in synaptic strength driven
by spurious neural activity within the circuit. While the potential
transition of synapses from a relatively plastic state to a rigid state
promotes memory stability (Fusi et al., 2005; Benna and Fusi,
2016; Kirkpatrick et al., 2017; Masse et al., 2018), such spontane-
ous fluctuations, which are commonly detected in animal experi-
ments, can still lead to degradation of precise synaptic weights
that encode a given memory, resulting in catastrophic forgetting
(Fusi and Abbott, 2007; Ziv and Brenner, 2018). These limita-
tions restrain the capacity of preexisting synapses for forming
new, functionally stable synaptic engrams.

On the other hand, experience-induced synapse formation or
eliminationmay substantially rewire the circuit connectivity and pro-
vide improved capacity for memory encoding. Counterintuitively,
the actual rate at which dendrites make synapses with bypassing
axons is extremely low, such that neurons are connected in a
spare wiring framework within a circuit (Markram et al., 1997;
Holmgren et al., 2003). This is exemplified in individual NAc
MSNs, in which the bypassing axons from the PFC, amygdala, or
thalamus exhibit low rates (i.e., 1%-2%) in forming synapse-like
connections on a given dendritic segment (Xia et al., 2020).
Within such a sparse wiring setup, even moderate levels of syn-
apse formation or elimination can effectively redefine the circuit
matrix for new, distinct connectivity patterns with a much higher
predicted capacity for memory encoding than the modification
of synaptic weight alone (Chklovskii et al., 2004; Knoblauch et
al., 2014; Knoblauch and Sommer, 2016). In animal experiments,
nascent and immature synapses are shown to be generated by
new experience (Arendt et al., 2013; Suvrathan et al., 2013; Chung
et al., 2017), and high levels of synaptogenesis are detected during
periods of novel learning (Holtmaat and Svoboda, 2009; Peters et
al., 2014; Chen et al., 2015; Holtmaat and Caroni, 2016). We argue
that these experience-generated synapses are key substrates in cre-
ating new connectivity patterns underlying unique circuit activity
dynamics; they stand as a distinct synaptic population, a synaptic
engram, that supports memory encoding (Fig. 2).

While generation and elimination of synapses are likely more
metabolically costly than modifying synaptic weight, this cost is
predicted by modeling work to favor circuit modularity, which
can facilitate sparse encoding to reduce interference between
memories and ultimately increase memory capacity (Ellefsen et
al., 2015). Such connectivity-oriented models also emphasize the
contribution of the modification of preexisting synapses. For
example, formation of new connections may encode core and,

particularly, novel information to form the skeleton of a mem-
ory, while modification of preexisting synapses may adjust and
rearrange the already encoded information to flesh out the skele-
ton with details and richness. This is particularly important
when considering that few experiences during adulthood are
completely novel and new memories often incorporate previ-
ously learned information.

An unsolved issue for the connectivity model of memory is
spontaneous synaptic turnover (Yang et al., 2009; Attardo et al.,
2015). While some synapses persist for the lifetime of a memory,
many others undergo continuous turnover (Xu et al., 2009; Yang
et al., 2009; Attardo et al., 2015). If every individual synapse is
essential for a complete memory, synaptic turnover would lead
to progressive memory fragmentation. In the mammalian brain,
two neurons are often connected through a compound connec-
tion comprising multiple synapses (Stepanyants et al., 2002). For
NAc MSNs, compound connections can be achieved by short ter-
minal branches (also called terminal tufts) from a single axonal
projection, which forms multiple synapses onto the same dendritic
segment (Tripathi et al., 2010; Aransay et al., 2015). Within a rela-
tively homogeneous microenvironment, synapses in a compound
connection may share similar spatial and temporal activation pro-
files. In this case, although activation of individual synapses is sto-
chastic, the integrated activity of these synapses, referred to as the
collective dynamics, is predicted to be strikingly stable, resilient to
the probabilistic failure or reasonably paced synaptic turnover
(Fauth et al., 2015). As a theoretical extrapolation, compound con-
nections may serve as the basic functional modules for a synaptic
engram to support stable circuit dynamics for a memory.
Apparently, the compound connection is not the only anatomic
organization for synapses. Mechanisms that determine how the
activity of individual synapses is integrated to generate stable cir-
cuit dynamics remain a hot topic for current computational and
experimental neuroscience.

The role of engram synapses in neuronal engram and circuit
dynamics
Neuronal engrams are formed during learning when individual
neurons are recruited into a functionally correlated population
to encode a memory (Josselyn and Tonegawa, 2020). Several
studies detect increased numbers and/or efficacy of synapses in
engram neurons (Ryan et al., 2015; Kitamura et al., 2017; Roy et
al., 2017; Choi et al., 2018; Zhou et al., 2019). Furthermore, expe-
rience-dependent synaptogenesis or synaptic strengthening appears
to occur preferentially between engram neurons across different
brain regions in support of the same memory (Kitamura et al.,
2017; Choi et al., 2018; Zhou et al., 2019). On the other hand, dis-
rupting experience-dependent synaptogenesis or synaptic potentia-
tion prevents the effective reactivation of neuronal engrams by
natural recall cues, resulting in memory failure (Ryan et al., 2015;
Kitamura et al., 2017; Roy et al., 2017). While this memory failure
can be rescued by strong optogenetic stimulation of engram neu-
rons (Ryan et al., 2015; Roy et al., 2017), the rescue requires the pre-
served synaptic connections between engram neurons (Roy et al.,
2017). These findings suggest that formation and potentiation of
synaptic connections are key mechanistic steps in forming and
maintaining neuronal engrams and related circuits for memory
encoding and recall.

In the context of SUD-related memories, it is tempting to
hypothesize that cocaine-generated synapses contribute to the
formation of neuronal engrams that encode specific aspects of
cocaine memory. As alluded to above, cocaine-generated silent
synapses detected in randomly sampled NAc MSNs mature after
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withdrawal from cocaine self-administration through two cellu-
lar steps, switching GluN2B NMDARs to nonGluN2B NMDARs
and recruiting AMPARs (Y. Q. Wang et al., 2021). After matura-
tion, these synapses become resilenced on cue reexposure-
induced retrieval of cocaine memories (Wright et al., 2020) (Fig.
1). However, another population of silent synapses is detected in
a potential cocaine engram/ensemble in the NAc. After with-
drawal from repeated intraperitoneal injections of cocaine, silent
synapses are preferentially detected in NAc MSNs that express
high levels of cFos within 2 h after a locomotor sensitization test,
in which animals are reexposed to cocaine injection and/or co-
caine-associated cues (Koya et al., 2012; Whitaker et al., 2016).
These synapses do not express high levels of GluN2B NMDARs,
but they do contribute to the decreased AMPAR-mediated
responses and decreased frequencies of AMPAR-mediated
EPSCs observed in cFos-positive neurons (Koya et al., 2012;
Whitaker et al., 2016). Thus, rather than being formed by synap-
togenesis, these synapses are generated through internalization
of AMPARs from synapses that have already existed before the
final sensitization test. In theory, these silent synapses in cFos-
enriched neurons may not belong to the same population of syn-
apses that are generated by the initial cocaine experience, but
instead represent a new synapse population specific for the cFos-
defined neuronal engram/ensemble. Alternatively, they may be

part of the silent synapse population generated by the initial co-
caine experience, mature after drug withdrawal (Fig. 1), but
exhibit substantially robust resilencing dynamics within the
cFos-defined engram neurons on reexposure to cocaine or co-
caine-associated cues after drug withdrawal. In either case, silent
synapse-mediated circuit remodeling is correlated with cocaine-
induced formation of neuronal engram/ensembles in the NAc.

As discussed above, temporal circuit dynamics are possibly
the circuit-level functional manifestation of synaptic and neuro-
nal engrams. Recent results suggest that a unique set of temporal
circuit dynamics is often formed gradually through learning
processes, relying on synapse-mediated remodeling of circuit
connectivity. For example, movement-related circuit activities in
the motor cortex become progressively correlated, exhibiting
consistent spatiotemporal sequences over repeated motor learn-
ing (Komiyama et al., 2010; Peters et al., 2014; Adler et al., 2019).
In conditioned fear learning, coactivity patterns of the amygdala
neuronal population that encode conditioned stimuli become
progressively similar to those that encode unconditioned stimuli
(Grewe et al., 2017). The range of coactivity patterns of a neural
circuit is constrained by the synaptic connectivity, which
can, theoretically, be expanded by experience-generated synap-
ses. Consistent with this, disrupting synapse formation or elimi-
nation during motor learning prevents the emergence of
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stereotypical and spatiotemporal sequences in the motor cortex
and impairs behavioral performance (Chen et al., 2015; Adler et
al., 2019). These findings suggest a compelling possibility that ex-
perience-induced synapse formation and elimination provide
key mechanisms for generation of new patterns of circuit activity
dynamics that encode new memories.

In associative learning, the emergence of new circuit dynam-
ics is, in part, driven by neurons acquiring stimulus- or behav-
ior-specific responses over time (Vega-Villar et al., 2019; Ahmed
et al., 2020). For cue-associated drug memories, following co-
caine self-administration training and withdrawal, some prior
cue-insensitive NAc neurons become cue-responsive, with the
relative number of new responsive neurons predicting the
magnitude of cue-induced cocaine seeking (Hollander and
Carelli, 2005, 2007; Guillem et al., 2014). These newly
recruited neurons may be particularly important in condi-
tioning cues with cocaine to form a cue-cocaine association.
To form such an association, neural substrates encoding cues
versus cocaine must interact to establish a link between neurons
of different engrams. Interestingly, the emergence of new, cue-re-
sponsive NAc neurons after cocaine experience follows a similar
time course to the generation and maturation of silent synapses
(Hollander and Carelli, 2007; Lee et al., 2013; Guillem et al., 2014),
leading us to speculate that such an associative link is mediated by
new synaptic connections.

Conclusions and future directions
In the context of a circuit- and engram-based understanding of
memory, we have attempted to provide a conceptual perspective
that silent synapses generated by cocaine experience stand as a
distinct set of synapses, or a synaptic engram, that encodes key
aspects of cocaine memories. Either by remodeling an estab-
lished circuit or expanding the circuit through recruiting addi-
tional neurons, these synapses may create new connectivity
patterns and, thus, new circuit activity dynamics that represent
newly acquired cocaine-associated memories.

Our literature analyses reveal some key questions for future
studies. A clearly important one is how synaptic remodeling cre-
ates new, memory-encoding circuit activity dynamics. Based on
limited evidence, we speculate that new synaptic connections
contribute to the formation of both neuronal engrams and new
circuit activity patterns, yet direct evidence linking the synaptic
modification to circuit dynamics remains lacking. This missing
link is particularly prominent in the context of SUD-associated
memories, in which the circuit activity patterns that are unique
to drug experience have not been identified. Another question
regards the relative contributions of experience-generated synap-
ses versus experience-modified synapses to memory encoding. We
speculate that modifications of preexisting synapses preferentially
retune the established circuit connectivity for incorporating previ-
ously learned information while synaptogenesis preferentially cre-
ates new circuit connectivity patterns for novel information/
experiences. This speculation needs to be tested and refined with
empirical data. While exceedingly challenging, addressing these
and other related questions will open the possibility to precisely
target and manipulate memory traces uniquely associated with
drug memories and treat addictive disorder.
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