Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Ventromedial Prefrontal Cortex Drives the Prioritization of Self-Associated Stimuli in Working Memory

Shouhang Yin, Taiyong Bi, Antao Chen and Tobias Egner
Journal of Neuroscience 3 March 2021, 41 (9) 2012-2023; DOI: https://doi.org/10.1523/JNEUROSCI.1783-20.2020
Shouhang Yin
1School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
2Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shouhang Yin
Taiyong Bi
3Center for Mental Health Research in School of Management, Zunyi Medical University, Guizhou, 563006, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antao Chen
2Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Antao Chen
Tobias Egner
4Center for Cognitive Neuroscience, and Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tobias Egner
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Humans show a pervasive bias for processing self- over other-related information, including in working memory (WM), where people prioritize the maintenance of self- (over other-) associated cues. To elucidate the neural mechanisms underlying this self-bias, we paired a self- versus other-associated spatial WM task with fMRI and transcranial direct current stimulation (tDCS) of human participants of both sexes. Maintaining self- (over other-) associated cues resulted in enhanced activity in classic WM regions (frontoparietal cortex), and in superior multivoxel pattern decoding of the cue locations from visual cortex. Moreover, ventromedial PFC (VMPFC) displayed enhanced functional connectivity with WM regions during maintenance of self-associated cues, which predicted individuals' behavioral self-prioritization effects. In a follow-up tDCS experiment, we targeted VMPFC with excitatory (anodal), inhibitory (cathodal), or sham tDCS. Cathodal tDCS eliminated the self-prioritization effect. These findings provide strong converging evidence for a causal role of VMPFC in driving self-prioritization effects in WM and provide a unique window into the interaction between social, self-referential processing and high-level cognitive control processes.

SIGNIFICANCE STATEMENT People have a strong tendency to attend to self-related stimuli, such as their names. This self-bias extends to the automatic prioritization of arbitrarily self-associated stimuli held in working memory. Since working memory is central to high-level cognition, this bias could influence how we make decisions. It is therefore important to understand the underlying brain mechanisms. Here, we used neuroimaging and noninvasive neurostimulation techniques to show that the source of self-bias in working memory is the ventromedial PFC, which modulates activity in frontoparietal brain regions to produce prioritized representations of self-associated stimuli in sensory cortex. This work thus reveals a brain circuit underlying the socially motivated (self-referential) biasing of high-level cognitive processing.

  • fMRI
  • self-prioritization
  • self-reference
  • tDCS
  • ventromedial PFC
  • working memory

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 41 (9)
Journal of Neuroscience
Vol. 41, Issue 9
3 Mar 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ventromedial Prefrontal Cortex Drives the Prioritization of Self-Associated Stimuli in Working Memory
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Ventromedial Prefrontal Cortex Drives the Prioritization of Self-Associated Stimuli in Working Memory
Shouhang Yin, Taiyong Bi, Antao Chen, Tobias Egner
Journal of Neuroscience 3 March 2021, 41 (9) 2012-2023; DOI: 10.1523/JNEUROSCI.1783-20.2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Ventromedial Prefrontal Cortex Drives the Prioritization of Self-Associated Stimuli in Working Memory
Shouhang Yin, Taiyong Bi, Antao Chen, Tobias Egner
Journal of Neuroscience 3 March 2021, 41 (9) 2012-2023; DOI: 10.1523/JNEUROSCI.1783-20.2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • fMRI
  • self-prioritization
  • self-reference
  • tDCS
  • ventromedial PFC
  • working memory

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Modular network between postrhinal visual cortex, amygdala and entorhinal cortex
  • High-level representations in human occipito-temporal cortex are indexed by distal connectivity
  • Altered heterosynaptic plasticity impairs visual discrimination learning in adenosine A1 receptor knockout mice
Show more Research Articles

Behavioral/Cognitive

  • High-level representations in human occipito-temporal cortex are indexed by distal connectivity
  • Dissociating perceptual awareness and postperceptual processing: The P300 is not a reliable marker of somatosensory target detection
  • Decoding concurrent representations of pitch and location in auditory working memory
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.