Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Neurobiology of Disease

Mechanisms and Consequences of Cerebellar Purkinje Cell Disinhibition in a Mouse Model of Duchenne Muscular Dystrophy

Wan-Chen Wu, Samual P. Bradley, Jason M. Christie and Jason R. Pugh
Journal of Neuroscience 9 March 2022, 42 (10) 2103-2115; DOI: https://doi.org/10.1523/JNEUROSCI.1256-21.2022
Wan-Chen Wu
1Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samual P. Bradley
2Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason M. Christie
2Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jason M. Christie
Jason R. Pugh
1Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
3Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Duchenne muscular dystrophy (DMD), the most common form of childhood muscular dystrophy, is caused by mutations in the dystrophin gene. In addition to debilitating muscle degeneration, patients display a range of cognitive deficits thought to result from the loss of dystrophin normally expressed in the brain. While the function of dystrophin in muscle tissue is well characterized, its role in the brain is still poorly understood. The highest expression of dystrophin in the mouse brain is in cerebellar Purkinje cells (PCs), where it colocalizes with GABAA receptor clusters. Using ex vivo electrophysiological recordings from connected molecular layer interneuron (MLI)–PC pairs, we investigated changes in inhibitory synaptic transmission caused by dystrophin deficiency. In male mdx mice (which lack long-form dystrophin), we found that responses at MLI–PC pairs were reduced by ∼60% because of both decreased quantal response amplitude and a reduced number of functional vesicle release sites. Using electron microscopy, we found significantly fewer and smaller anatomically defined inhibitory synapses contacting the soma of PCs in mdx mice, suggesting that dystrophin may play a critical role in synapse formation and/or maintenance. Functionally, we found reduced MLI-evoked pauses in PC firing in acute slices. In vivo recordings from awake mdx mice showed increased sensory-evoked simple spike firing in positively modulating PCs, consistent with reduced feedforward inhibition, but no change in negatively modulating PCs. These data suggest that dystrophin deficiency in PCs disrupts inhibitory signaling in the cerebellar circuit and PC firing patterns, potentially contributing to cognitive and motor deficits observed in mdx mice and DMD patients.

SIGNIFICANCE STATEMENT Duchenne muscular dystrophy (DMD) is primarily characterized by progressive muscle weakening caused by genetic mutations in the gene for dystrophin. Dystrophin is also normally expressed in the CNS, and DMD patients experience a range of nonprogressive cognitive deficits. The pathophysiology of CNS neurons resulting from loss of dystrophin and the function of dystrophin in neurons are still poorly understood. Using cerebellar PCs as a model, we found that the loss of dystrophin specifically disrupts the number and strength of inhibitory synaptic connections, suggesting that dystrophin participates in formation and/or maintenance of these synapses. This work provides insight into the function of dystrophin in the CNS and establishes neuronal and synaptic dysfunction, which may underlie cognitive deficits in DMD.

  • DMD
  • dystrophin
  • inhibition
  • mdx
  • Purkinje
  • synapse

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (10)
Journal of Neuroscience
Vol. 42, Issue 10
9 Mar 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms and Consequences of Cerebellar Purkinje Cell Disinhibition in a Mouse Model of Duchenne Muscular Dystrophy
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Mechanisms and Consequences of Cerebellar Purkinje Cell Disinhibition in a Mouse Model of Duchenne Muscular Dystrophy
Wan-Chen Wu, Samual P. Bradley, Jason M. Christie, Jason R. Pugh
Journal of Neuroscience 9 March 2022, 42 (10) 2103-2115; DOI: 10.1523/JNEUROSCI.1256-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Mechanisms and Consequences of Cerebellar Purkinje Cell Disinhibition in a Mouse Model of Duchenne Muscular Dystrophy
Wan-Chen Wu, Samual P. Bradley, Jason M. Christie, Jason R. Pugh
Journal of Neuroscience 9 March 2022, 42 (10) 2103-2115; DOI: 10.1523/JNEUROSCI.1256-21.2022
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • DMD
  • dystrophin
  • inhibition
  • mdx
  • Purkinje
  • synapse

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Oxidative stress-induced damage to the developing hippocampus is mediated by GSK3beta
  • Disruption of endosomal sorting in Schwann cells leads to defective myelination and endosomal abnormalities observed in Charcot-Marie-Tooth disease
  • Depolarizing NaV and hyperpolarizing KV channels are co-trafficked in sensory neurons
Show more Research Articles

Neurobiology of Disease

  • Disruption of endosomal sorting in Schwann cells leads to defective myelination and endosomal abnormalities observed in Charcot-Marie-Tooth disease
  • Chronic Cortical Inflammation, Cognitive Impairment, and Immune Reactivity Associated with Diffuse Brain Injury Are Ameliorated by Forced Turnover of Microglia
  • Voluntary exercise boosts striatal dopamine release: evidence for the necessary and sufficient role of BDNF
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.