Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Partially Overlapping Neural Correlates of Metacognitive Monitoring and Metacognitive Control

Annika Boldt and Sam J Gilbert
Journal of Neuroscience 27 April 2022, 42 (17) 3622-3635; DOI: https://doi.org/10.1523/JNEUROSCI.1326-21.2022
Annika Boldt
Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Annika Boldt
Sam J Gilbert
Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Metacognition describes the process of monitoring one's own mental states, often for the purpose of cognitive control. Previous research has investigated how metacognitive signals are generated (metacognitive monitoring), for example, when people (both female/male) judge their confidence in their decisions and memories. Research has also investigated how metacognitive signals are used to influence behavior (metacognitive control), for example, setting a reminder (i.e., cognitive offloading) for something you are not confident you will remember. However, the mapping between metacognitive monitoring and metacognitive control needs further study on a neural level. We used fMRI to investigate a delayed-intentions task with a reminder element, allowing human participants to use their metacognitive insight to engage metacognitive control. Using multivariate pattern analysis, we found that we could separately decode both monitoring and control, and, to a lesser extent, cross-classify between them. Therefore, brain patterns associated with monitoring and control are partially, but not fully, overlapping.

SIGNIFICANCE STATEMENT Models of metacognition commonly distinguish between monitoring (how metacognition is formed) and control (how metacognition is used for behavioral regulation). Research into these facets of metacognition has often happened in isolation. Here, we provide a study which directly investigates the mapping between metacognitive monitoring and metacognitive control at a neural level. We applied multivariate pattern analysis to fMRI data from a novel task in which participants separately rated their confidence (metacognitive monitoring) and how much they would like to use a reminder (metacognitive control). We find support for the notion that the two aspects of metacognition overlap partially but not fully. We argue that future research should focus on how different metacognitive signals are selected for control.

  • cognitive offloading
  • confidence
  • control
  • decoding
  • metacognition
  • reminders

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (17)
Journal of Neuroscience
Vol. 42, Issue 17
27 Apr 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Partially Overlapping Neural Correlates of Metacognitive Monitoring and Metacognitive Control
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Partially Overlapping Neural Correlates of Metacognitive Monitoring and Metacognitive Control
Annika Boldt, Sam J Gilbert
Journal of Neuroscience 27 April 2022, 42 (17) 3622-3635; DOI: 10.1523/JNEUROSCI.1326-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Partially Overlapping Neural Correlates of Metacognitive Monitoring and Metacognitive Control
Annika Boldt, Sam J Gilbert
Journal of Neuroscience 27 April 2022, 42 (17) 3622-3635; DOI: 10.1523/JNEUROSCI.1326-21.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • cognitive offloading
  • confidence
  • control
  • decoding
  • metacognition
  • reminders

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Stimulus-induced changes in 1/f-like background activity in EEG
  • Enhancement of hippocampal-thalamocortical temporal coordination during slow-frequency long-duration anterior thalamic spindles
  • Oscillatory population-level activity of dorsal raphe serotonergic neurons is inscribed in sleep structure
Show more Research Articles

Behavioral/Cognitive

  • Enhancement of hippocampal-thalamocortical temporal coordination during slow-frequency long-duration anterior thalamic spindles
  • Oscillatory population-level activity of dorsal raphe serotonergic neurons is inscribed in sleep structure
  • Tripartite Crosstalk between Cytokine IL-1β, NMDA-R and Misplaced Mitochondrial Anchor in Neuronal Dendrites is a Novel Pathway for Neurodegeneration in Inflammatory Diseases
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.