Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses

Debanjan Dasgupta, Tom P. A. Warner, Andrew Erskine and Andreas T. Schaefer
Journal of Neuroscience 25 May 2022, 42 (21) 4278-4296; DOI: https://doi.org/10.1523/JNEUROSCI.1422-21.2022
Debanjan Dasgupta
1Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
2Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Debanjan Dasgupta
Tom P. A. Warner
1Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Erskine
1Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andreas T. Schaefer
1Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
2Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andreas T. Schaefer
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Odors are transported by turbulent air currents, creating complex temporal fluctuations in odor concentration that provide a potentially informative stimulus dimension. We have shown that mice are able to discriminate odor stimuli based on their temporal structure, indicating that information contained in the temporal structure of odor plumes can be extracted by the mouse olfactory system. Here, using in vivo extracellular and intracellular electrophysiological recordings, we show that mitral cells (MCs) and tufted cells (TCs) of the male C57BL/6 mouse olfactory bulb can encode the dominant temporal frequencies present in odor stimuli up to at least 20 Hz. A substantial population of cell-odor pairs showed significant coupling of their subthreshold membrane potential with the odor stimulus at both 2 Hz (29/70) and the suprasniff frequency 20 Hz (24/70). Furthermore, mitral/tufted cells (M/TCs) show differential coupling of their membrane potential to odor concentration fluctuations with tufted cells coupling more strongly for the 20 Hz stimulation. Frequency coupling was always observed to be invariant to odor identity, and M/TCs that coupled well to a mixture also coupled to at least one of the components of the mixture. Interestingly, pharmacological blocking of the inhibitory circuitry strongly modulated frequency coupling of cell-odor pairs at both 2 Hz (10/15) and 20 Hz (9/15). These results provide insight into how both cellular and circuit properties contribute to the encoding of temporal odor features in the mouse olfactory bulb.

SIGNIFICANCE STATEMENT Odors in the natural environment have a strong temporal structure that can be extracted and used by mice in their behavior. Here, using in vivo extracellular and intracellular electrophysiological techniques, we show that the projection neurons in the olfactory bulb can encode and couple to the dominant frequency present in an odor stimulus. Furthermore, frequency coupling was observed to be differential between mitral and tufted cells and was odor invariant but strongly modulated by local inhibitory circuits. In summary, this study provides insight into how both cellular and circuit properties modulate encoding of odor temporal features in the mouse olfactory bulb.

  • frequency coupling
  • in vivo electrophysiology
  • inhibition
  • olfaction
  • olfactory bulb
  • temporal structure in odor

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (21)
Journal of Neuroscience
Vol. 42, Issue 21
25 May 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses
Debanjan Dasgupta, Tom P. A. Warner, Andrew Erskine, Andreas T. Schaefer
Journal of Neuroscience 25 May 2022, 42 (21) 4278-4296; DOI: 10.1523/JNEUROSCI.1422-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses
Debanjan Dasgupta, Tom P. A. Warner, Andrew Erskine, Andreas T. Schaefer
Journal of Neuroscience 25 May 2022, 42 (21) 4278-4296; DOI: 10.1523/JNEUROSCI.1422-21.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • frequency coupling
  • in vivo electrophysiology
  • inhibition
  • olfaction
  • olfactory bulb
  • temporal structure in odor

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Muscarinic Acetylcholine M2 Receptors Regulate Lateral Habenula Neuron Activity and Control Cocaine Seeking Behavior
  • Sensorimotor Cortex GABA Moderates the Relationship between Physical Exertion and Assessments of Effort
  • Dual leucine zipper kinase regulates Dscam expression through a non-canonical function of the cytoplasmic poly(A)-binding protein
Show more Research Articles

Systems/Circuits

  • Muscarinic Acetylcholine M2 Receptors Regulate Lateral Habenula Neuron Activity and Control Cocaine Seeking Behavior
  • Learned Motor Patterns Are Replayed in Human Motor Cortex during Sleep
  • Whole-Brain Wiring Diagram of Oxytocin System in Adult Mice
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.