Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Animal-to-Animal Variability in Partial Hippocampal Remapping in Repeated Environments

Parsa Nilchian, Matthew A. Wilson and Honi Sanders
Journal of Neuroscience 29 June 2022, 42 (26) 5268-5280; DOI: https://doi.org/10.1523/JNEUROSCI.3221-20.2022
Parsa Nilchian
1Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199
2Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
3Massachusetts Institute of Technology Summer Research Program, Cambridge, Massachusetts 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew A. Wilson
2Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
4Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Honi Sanders
2Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
4Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hippocampal place cells form a map of the environment of an animal. Changes in the hippocampal map can be brought about in a number of ways, including changes to the environment, task, internal state of the subject, and the passage of time. These changes in the hippocampal map have been called remapping. In this study, we examine remapping during repeated exposure to the same environment. Different animals can have different remapping responses to the same changes. This variability across animals in remapping behavior is not well understood. In this work, we analyzed electrophysiological recordings from the CA3 region of the hippocampus performed by Alme et al. (2014), in which five male rats were exposed to 11 different environments, including a variety of repetitions of those environments. To compare the hippocampal maps between two experiences, we computed average rate map correlation coefficients. We found changes in the hippocampal maps between different sessions in the same environment. These changes consisted of partial remapping, a form of remapping in which some place cells maintain their place fields, whereas other place cells remap their place fields. Each animal exhibited partial remapping differently. We discovered that the heterogeneity in hippocampal representational changes across animals is structured; individual animals had consistently different levels of partial remapping across a range of independent comparisons. Our findings highlight that partial hippocampal remapping between repeated environments depends on animal-specific factors.

SIGNIFICANCE STATEMENT Context identification is a difficult problem. Animals are not provided with objective context identity labels, so they must infer which experiences come from which contexts. Different animals may have different strategies for performing this inference. We find that different animals have stereotypically different extents of partial hippocampal remapping, a neural correlate of subjective assessment of context identity.

  • context
  • hippocampus
  • interindividual variability
  • overdispersion
  • place cell
  • remapping

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (26)
Journal of Neuroscience
Vol. 42, Issue 26
29 Jun 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Animal-to-Animal Variability in Partial Hippocampal Remapping in Repeated Environments
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Animal-to-Animal Variability in Partial Hippocampal Remapping in Repeated Environments
Parsa Nilchian, Matthew A. Wilson, Honi Sanders
Journal of Neuroscience 29 June 2022, 42 (26) 5268-5280; DOI: 10.1523/JNEUROSCI.3221-20.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Animal-to-Animal Variability in Partial Hippocampal Remapping in Repeated Environments
Parsa Nilchian, Matthew A. Wilson, Honi Sanders
Journal of Neuroscience 29 June 2022, 42 (26) 5268-5280; DOI: 10.1523/JNEUROSCI.3221-20.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • context
  • hippocampus
  • interindividual variability
  • overdispersion
  • place cell
  • remapping

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Stimulus-induced changes in 1/f-like background activity in EEG
  • Enhancement of hippocampal-thalamocortical temporal coordination during slow-frequency long-duration anterior thalamic spindles
  • Oscillatory population-level activity of dorsal raphe serotonergic neurons is inscribed in sleep structure
Show more Research Articles

Behavioral/Cognitive

  • Enhancement of hippocampal-thalamocortical temporal coordination during slow-frequency long-duration anterior thalamic spindles
  • Oscillatory population-level activity of dorsal raphe serotonergic neurons is inscribed in sleep structure
  • Tripartite Crosstalk between Cytokine IL-1β, NMDA-R and Misplaced Mitochondrial Anchor in Neuronal Dendrites is a Novel Pathway for Neurodegeneration in Inflammatory Diseases
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.