Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Cellular/Molecular

Dual Leucine Zipper Kinase Regulates Dscam Expression through a Noncanonical Function of the Cytoplasmic Poly(A)-Binding Protein

Monika Singh, Bing Ye and Jung Hwan Kim
Journal of Neuroscience 3 August 2022, 42 (31) 6007-6019; DOI: https://doi.org/10.1523/JNEUROSCI.0543-21.2022
Monika Singh
1Department of Biology, University of Nevada, Reno, Nevada 89557,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bing Ye
2Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bing Ye
Jung Hwan Kim
1Department of Biology, University of Nevada, Reno, Nevada 89557,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jung Hwan Kim
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dual leucine zipper kinase (DLK) plays a pivotal role in the development, degeneration, and regeneration of neurons. DLK can regulate gene expression post-transcriptionally, but the underlying mechanism remains poorly understood. The Drosophila DLK, Wallenda (Wnd), regulates the expression of Down syndrome cell adhesion molecule (Dscam) to control presynaptic arbor growth. This regulation is mediated by the 3′ untranslated region (3′UTR) of Dscam mRNA, which suggests that RNA binding proteins (RBPs) mediate DLK function. We performed a genome-wide cell-based RNAi screen of RBPs and identified the cytoplasmic poly(A)-binding protein, pAbp, as an RBP that mediates Wnd-induced increase in Dscam expression. Genetic analysis shows that Wnd requires pAbp for promoting presynaptic arbor growth and for enhancing Dscam expression. Our analysis revealed that Dscam mRNAs harbor short poly(A) tails. We identified a region in Dscam 3′UTR that specifically interacts with pAbp. Removing this region significantly reduced Wnd-induced increase in Dscam expression. These suggest that a noncanonical interaction of PABP with the 3′UTR of target transcripts is essential for DLK functions.

SIGNIFICANCE STATEMENT The kinase DLK plays key roles in a multitude of neuronal responses, including axon development, neurodegeneration, and nerve injury. Previous studies show that DLK acts via mRNAs to regulate protein synthesis, but how DLK does so is poorly understood. This study demonstrates that DLK regulates the synthesis of Dscam through the poly(A)-binding protein PABP-C. Whereas PABP-C is known as a general translational activator, our study shows that DLK-mediated Dscam expression involves a noncanonical interaction between PABP-C and the Dscam mRNA, which leads to a selective regulation of Dscam translation by PABP-C. Thus, our study provides novel insights into the mechanisms that underlie the function of DLK and regulation of gene expression of PABP-C.

  • axon growth
  • DLK
  • Dscam
  • PAPB
  • post-transcriptional regulation
  • RNAi screen

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (31)
Journal of Neuroscience
Vol. 42, Issue 31
3 Aug 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dual Leucine Zipper Kinase Regulates Dscam Expression through a Noncanonical Function of the Cytoplasmic Poly(A)-Binding Protein
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Dual Leucine Zipper Kinase Regulates Dscam Expression through a Noncanonical Function of the Cytoplasmic Poly(A)-Binding Protein
Monika Singh, Bing Ye, Jung Hwan Kim
Journal of Neuroscience 3 August 2022, 42 (31) 6007-6019; DOI: 10.1523/JNEUROSCI.0543-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Dual Leucine Zipper Kinase Regulates Dscam Expression through a Noncanonical Function of the Cytoplasmic Poly(A)-Binding Protein
Monika Singh, Bing Ye, Jung Hwan Kim
Journal of Neuroscience 3 August 2022, 42 (31) 6007-6019; DOI: 10.1523/JNEUROSCI.0543-21.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • axon growth
  • DLK
  • Dscam
  • PAPB
  • post-transcriptional regulation
  • RNAi screen

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Stimulus-induced changes in 1/f-like background activity in EEG
  • Enhancement of hippocampal-thalamocortical temporal coordination during slow-frequency long-duration anterior thalamic spindles
  • Oscillatory population-level activity of dorsal raphe serotonergic neurons is inscribed in sleep structure
Show more Research Articles

Cellular/Molecular

  • p140Cap regulates the composition and localization of the NMDAR complex in synaptic lipid rafts
  • Elevated TNF-α Leads to Neural Circuit Instability in the Absence of Interferon Regulatory Factor 8
  • Neurotensin Release from Dopamine Neurons Drives Long-Term Depression of Substantia Nigra Dopamine Signaling
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.