Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Featured ArticleResearch Articles, Systems/Circuits

Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment

Mohammad M. Herzallah, Alon Amir and Denis Paré
Journal of Neuroscience 3 August 2022, 42 (31) 6053-6068; DOI: https://doi.org/10.1523/JNEUROSCI.0461-22.2022
Mohammad M. Herzallah
1Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102,
2Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine 20002
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alon Amir
1Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Denis Paré
1Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Recently, it has become clear that several thalamic nuclei located near the midline regulate motivated behaviors. However, one midline thalamic nucleus that projects to key nodes in the foraging network, the central medial thalamic nucleus (CMT), has received little attention so far. Therefore, the present study examined CMT contributions to foraging behavior using inactivation and unit recording techniques in male rats. Inactivation of CMT or the basolateral amygdala (BLA) with muscimol abolished the normally cautious behavior of rats in the foraging task. Moreover, CMT neurons showed large but heterogeneous activity changes during the foraging task, with many neurons decreasing or increasing their discharge rates, with a modest bias for the latter. A generalized linear model revealed that the nature (inhibitory vs excitatory) and relative magnitude of the activity modulations seen in CMT neurons differed markedly from those of principal BLA cells but were very similar to those of fast-spiking BLA interneurons. Together, these findings suggest that CMT is an important regulator of foraging behavior. In the Discussion, we consider how CMT is integrated into the network of structures that regulate foraging.

SIGNIFICANCE STATEMENT Foraging entails a complex balance between approach and avoidance alongside sensorimotor and homeostatic processes under the control of multiple cortical and subcortical areas. Although the central medial thalamic nucleus (CMT) is connected to many nodes in this network, its role in the regulation of foraging behavior has not been investigated so far. Here, we examined CMT contributions to foraging behavior using inactivation and unit recording techniques. We found that CMT inactivation abolishes the normally cautious foraging behavior of rats and that CMT neurons show large but heterogeneous changes in firing rates during the foraging task. Together, these results suggest that CMT is an important regulator of foraging behavior.

  • amygdala
  • anxiety
  • central medial
  • fear
  • foraging
  • thalamus

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (31)
Journal of Neuroscience
Vol. 42, Issue 31
3 Aug 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment
Mohammad M. Herzallah, Alon Amir, Denis Paré
Journal of Neuroscience 3 August 2022, 42 (31) 6053-6068; DOI: 10.1523/JNEUROSCI.0461-22.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Influence of Rat Central Thalamic Neurons on Foraging Behavior in a Hazardous Environment
Mohammad M. Herzallah, Alon Amir, Denis Paré
Journal of Neuroscience 3 August 2022, 42 (31) 6053-6068; DOI: 10.1523/JNEUROSCI.0461-22.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • amygdala
  • anxiety
  • central medial
  • fear
  • foraging
  • thalamus

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Retinoschisin deficiency induces persistent aberrant waves of activity affecting neuroglial signaling in the retina
  • Learning from Ingroup Experiences Changes Intergroup Impressions
  • Multiple sources of fast traveling waves during human seizures: resolving a controversy
Show more Research Articles

Systems/Circuits

  • Extra-glomerular excitation of rat olfactory bulb mitral cells by depolarizing GABAergic synaptic input
  • Cortical Motion Perception Emerges from Dimensionality Reduction with Evolved Spike-Timing-Dependent Plasticity Rules
  • Postsurgical Latent Pain Sensitization Is Driven by Descending Serotonergic Facilitation and Masked by µ-Opioid Receptor Constitutive Activity in the Rostral Ventromedial Medulla
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.