Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

State-Dependent Modulation of Activity in Distinct Layer 6 Corticothalamic Neurons in Barrel Cortex of Awake Mice

Suryadeep Dash, Dawn M. Autio and Shane R. Crandall
Journal of Neuroscience 24 August 2022, 42 (34) 6551-6565; DOI: https://doi.org/10.1523/JNEUROSCI.2219-21.2022
Suryadeep Dash
Department of Physiology, Michigan State University, East Lansing, Michigan 48824
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dawn M. Autio
Department of Physiology, Michigan State University, East Lansing, Michigan 48824
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shane R. Crandall
Department of Physiology, Michigan State University, East Lansing, Michigan 48824
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomic, physiological, and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior. To address this gap, we performed juxtacellular recordings from optogenetically identified CT neurons in whisker-related primary somatosensory cortex (wS1) of awake, head-fixed mice (either sex) free to rest quietly or self-initiate bouts of whisking and locomotion. We found a rich diversity of response profiles exhibited by CT cells. Their spiking patterns were either modulated by whisking-related behavior (∼28%) or not (∼72%). Whisking-responsive neurons exhibited both increases (activated-type) and decreases in firing rates (suppressed-type) that aligned with whisking onset better than locomotion. We also encountered responsive neurons with preceding modulations in firing rate before whisking onset. Overall, whisking better explained these changes in rates than overall changes in arousal. Whisking-unresponsive CT cells were generally quiet, with many having low spontaneous firing rates (sparse-type) and others being completely silent (silent-type). Remarkably, the sparse firing CT population preferentially spiked at the state transition point when pupil diameter constricted, and the mouse entered quiet wakefulness. Thus, our results demonstrate that L6 CT cells in wS1 show diverse spiking patterns, perhaps subserving distinct functional roles related to precisely timed responses during complex behaviors and transitions between discrete waking states.

SIGNIFICANCE STATEMENT Layer 6 corticothalamic neurons provide a massive input to the sensory thalamus and local connectivity within cortex, but their role in thalamocortical processing remains unclear because of difficulty accessing and isolating their activity. Although several recent optogenetic studies reveal that the net influence of corticothalamic actions, suppression versus enhancement, depends critically on the rate these neurons fire, the factors that influence their spiking are poorly understood, particularly during wakefulness. Using the well-established Ntsr1-Cre line to target this elusive population in the whisker somatosensory cortex of awake mice, we found that corticothalamic neurons show diverse state-related responses and modulations in firing rate. These results suggest separate corticothalamic populations can differentially influence thalamocortical excitability during rapid state transitions in awake, behaving animals.

  • arousal
  • neocortex
  • optogenetics
  • sensorimotor
  • somatosensory cortex
  • thalamus

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (34)
Journal of Neuroscience
Vol. 42, Issue 34
24 Aug 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
State-Dependent Modulation of Activity in Distinct Layer 6 Corticothalamic Neurons in Barrel Cortex of Awake Mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
State-Dependent Modulation of Activity in Distinct Layer 6 Corticothalamic Neurons in Barrel Cortex of Awake Mice
Suryadeep Dash, Dawn M. Autio, Shane R. Crandall
Journal of Neuroscience 24 August 2022, 42 (34) 6551-6565; DOI: 10.1523/JNEUROSCI.2219-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
State-Dependent Modulation of Activity in Distinct Layer 6 Corticothalamic Neurons in Barrel Cortex of Awake Mice
Suryadeep Dash, Dawn M. Autio, Shane R. Crandall
Journal of Neuroscience 24 August 2022, 42 (34) 6551-6565; DOI: 10.1523/JNEUROSCI.2219-21.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • arousal
  • neocortex
  • optogenetics
  • sensorimotor
  • somatosensory cortex
  • thalamus

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Carbogen-induced respiratory acidosis blocks experimental seizures by a direct and specific inhibition of NaV1.2 channels in the axon initial segment of pyramidal neurons
  • Modulation of motor vigour by expectation of reward probability trial-by-trial is preserved in healthy ageing and Parkinson's disease patients
  • The neural basis for biased behavioral responses evoked by galvanic vestibular stimulation in primates
Show more Research Articles

Systems/Circuits

  • The neural basis for biased behavioral responses evoked by galvanic vestibular stimulation in primates
  • Reversible Inactivation of Ferret Auditory Cortex Impairs Spatial and Nonspatial Hearing
  • Differential Regulation of Prelimbic and Thalamic Transmission to the Basolateral Amygdala by Acetylcholine Receptors
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.