Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Dynamics and Mechanisms of Contrast-Dependent Modulation of Spatial-Frequency Tuning in the Early Visual Cortex

Hiroki Tanaka and Ryohei Sawada
Journal of Neuroscience 14 September 2022, 42 (37) 7047-7059; DOI: https://doi.org/10.1523/JNEUROSCI.2086-21.2022
Hiroki Tanaka
1Faculty of Information Science and Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
2Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryohei Sawada
1Faculty of Information Science and Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The spatial-frequency (SF) tuning of neurons in the early visual cortex is adjusted for stimulus contrast. As the contrast increases, SF tuning is modulated so that the transmission of fine features is facilitated. A variety of mechanisms are involved in shaping SF tunings, but those responsible for the contrast-dependent modulations are unclear. To address this, we measured the time course of SF tunings of area 17 neurons in male cats under different contrasts with a reverse correlation. After response onset, the optimal SF continuously shifted to a higher SF over time, with a larger shift for higher contrast. At high contrast, whereas neurons with a large shift of optimal SF exhibited a large bandwidth decrease, those with a negligible shift increased the bandwidth over time. Between these two extremes, the degree of SF shift and bandwidth change continuously varied. At low contrast, bandwidth generally decreased over time. These dynamic effects enhanced the processing of high-frequency range under a high-contrast condition and allowed time-average SF tuning curves to show contrast-dependent modulation, like that of steady-state SF tuning curves reported previously. Combinations of two mechanisms, one that decreases bandwidth and shifts optimal SF, and another that increases bandwidth without shifting optimal SF, would explain the full range of SF tuning dynamics. Our results indicate that one of the essential roles of tuning dynamics of area 17 neurons, which have been observed for various visual features, is to adjust tunings depending on contrast.

SIGNIFICANCE STATEMENT The spatial scales of features transmitted by cortical neurons are adjusted depending on stimulus contrast. However, the underlying mechanism is not fully understood. We measured the time course of spatial frequency tunings of cat area 17 neurons under different contrast conditions and observed a variety of dynamic effects that contributed to spatial-scale adjustment, allowing neurons to adjust their spatial frequency tuning range depending on contrast. Our results suggest that one of the essential roles of tuning dynamics of area 17 neurons, which have been observed for various visual features, is to adjust tunings depending on contrast.

  • coarse-to-fine processing
  • contrast modulation
  • spatial frequency tuning
  • tuning dynamics
  • visual cortex

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (37)
Journal of Neuroscience
Vol. 42, Issue 37
14 Sep 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dynamics and Mechanisms of Contrast-Dependent Modulation of Spatial-Frequency Tuning in the Early Visual Cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Dynamics and Mechanisms of Contrast-Dependent Modulation of Spatial-Frequency Tuning in the Early Visual Cortex
Hiroki Tanaka, Ryohei Sawada
Journal of Neuroscience 14 September 2022, 42 (37) 7047-7059; DOI: 10.1523/JNEUROSCI.2086-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Dynamics and Mechanisms of Contrast-Dependent Modulation of Spatial-Frequency Tuning in the Early Visual Cortex
Hiroki Tanaka, Ryohei Sawada
Journal of Neuroscience 14 September 2022, 42 (37) 7047-7059; DOI: 10.1523/JNEUROSCI.2086-21.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • coarse-to-fine processing
  • contrast modulation
  • spatial frequency tuning
  • tuning dynamics
  • visual cortex

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Irrelevant Threats Linger and Affect Behavior in High Anxiety
  • Spatiotemporal Developmental Gradient of Thalamic Morphology, Microstructure, and Connectivity fromthe Third Trimester to Early Infancy
  • Expression of a Form of Cerebellar Motor Memory Requires Learned Alterations to the Activity of Inhibitory Molecular Layer Interneurons
Show more Research Articles

Systems/Circuits

  • 2-AG-Mediated Control of GABAergic Signaling Is Impaired in a Model of Epilepsy
  • Expression of a Form of Cerebellar Motor Memory Requires Learned Alterations to the Activity of Inhibitory Molecular Layer Interneurons
  • Quantitative Fluorescence Analysis Reveals Dendrite-Specific Thalamocortical Plasticity in L5 Pyramidal Neurons during Learning
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.