Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Two Types of Motor Inhibition after Action Errors in Humans

Yao Guan and Jan R. Wessel
Journal of Neuroscience 21 September 2022, 42 (38) 7267-7275; DOI: https://doi.org/10.1523/JNEUROSCI.1191-22.2022
Yao Guan
1Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52245
3Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52245
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jan R. Wessel
1Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52245
2Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa 52242
3Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52245
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jan R. Wessel
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Adaptive behavior requires the ability to appropriately react to action errors. Post-error slowing (PES) of response times is one of the most reliable phenomena in human behavior. It has been proposed that PES is partially achieved through inhibition of the motor system. However, there is no direct evidence for this link, or indeed, that the motor system is physiologically inhibited after errors altogether. Here, we used transcranial magnetic stimulation and electromyography to measure corticospinal excitability (CSE) across four experiments using a Simon task, in which female and male human participants sometimes committed errors. Errors were followed by reduced CSE at two different time points and in two different modes. Shortly after error commission (250 ms), CSE was broadly suppressed (i.e., even task-unrelated motor effectors were inhibited). During the preparation of the subsequent response, CSE was specifically reduced at task-relevant effectors only. This latter effect was directly related to PES, with stronger CSE suppression accompanying greater PES. This suggests that PES is achieved through increased inhibitory control during post-error responses. To provide converging evidence, we then reanalyzed an openly available EEG dataset that contained both Simon- and Stop-signal tasks using independent component analysis. We found that the same neural source component that indexed action cancellation in the stop-signal task also showed clear PES-related activity during post-error responses in the Simon task. Together, these findings provide evidence that post-error adaptation is partially achieved through motor inhibition. Moreover, inhibition is engaged in two modes (first nonselective, then selective), aligning with recent multistage theories of error processing.

SIGNIFICANCE STATEMENT It is a common observation that humans implement a higher degree of caution when repeating an action during which they just committed a mistake. In the laboratory, such increased “caution” is reflected in post-error slowing of response latencies. Many competing theories exist regarding the precise neural mechanisms underlying post-error slowing. Using transcranial magnetic stimulation, we show that, after error commission, the human corticomotor system is momentarily inhibited, both immediately after an error and during the preparation of the next action. Moreover, motor inhibition during the latter time period is directly predictive of post-error slowing. This shows that inhibitory control is a key mechanism humans engage to regulate their own behavior in the aftermath of error commission.

  • corticospinal excitability
  • error processing
  • inhibitory control
  • motor-evoked potentials
  • performance-monitoring
  • post-error slowing

SfN exclusive license.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 42 (38)
Journal of Neuroscience
Vol. 42, Issue 38
21 Sep 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Two Types of Motor Inhibition after Action Errors in Humans
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Two Types of Motor Inhibition after Action Errors in Humans
Yao Guan, Jan R. Wessel
Journal of Neuroscience 21 September 2022, 42 (38) 7267-7275; DOI: 10.1523/JNEUROSCI.1191-22.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Two Types of Motor Inhibition after Action Errors in Humans
Yao Guan, Jan R. Wessel
Journal of Neuroscience 21 September 2022, 42 (38) 7267-7275; DOI: 10.1523/JNEUROSCI.1191-22.2022
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • corticospinal excitability
  • error processing
  • inhibitory control
  • motor-evoked potentials
  • performance-monitoring
  • post-error slowing

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Structure and Function of Neuronal Circuits Linking Ventrolateral Preoptic Nucleus and Lateral Hypothalamic Area
  • Parvalbumin-Positive Interneurons in the Medial Prefrontal Cortex Regulate Stress-Induced Fear Extinction Impairments in Male and Female Rats
  • Spinal Basis of Direction Control during Locomotion in Larval Zebrafish
Show more Research Articles

Behavioral/Cognitive

  • Learning a Model of Shape Selectivity in V4 Cells Reveals Shape Encoding Mechanisms in the Brain
  • A Fluid Self-Concept: How the Brain Maintains Coherence and Positivity across an Interconnected Self-Concept While Incorporating Social Feedback
  • A Texture Statistics Encoding Model Reveals Hierarchical Feature Selectivity across Human Visual Cortex
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.