Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

µ-Opioid Receptor Activation Reduces Glutamate Release in the PreBötzinger Complex in Organotypic Slice Cultures

Anders B. Jørgensen, Camilla Mai Rasmussen and Jens C. Rekling
Journal of Neuroscience 26 October 2022, 42 (43) 8066-8077; DOI: https://doi.org/10.1523/JNEUROSCI.1369-22.2022
Anders B. Jørgensen
Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Camilla Mai Rasmussen
Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jens C. Rekling
Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jens C. Rekling
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The inspiratory rhythm generator, located in the brainstem preBötzinger complex (preBötC), is dependent on glutamatergic signaling and is affected profoundly by opioids. Here, we used organotypic slice cultures of the newborn mouse brainstem of either sex in combination with genetically encoded sensors for Ca2+, glutamate, and GABA to visualize Ca2+, glutamatergic and GABAergic signaling during spontaneous rhythm and in the presence of DAMGO. During spontaneous rhythm, the glutamate sensor SF-iGluSnFR.A184S revealed punctate synapse-like fluorescent signals along dendrites and somas in the preBötC with decay times that were prolonged by the glutamate uptake blocker (TFB-TBOA). The GABA sensor iGABASnFR showed a more diffuse fluorescent signal during spontaneous rhythm. Rhythmic Ca2+- and glutamate transients had an inverse relationship between the spontaneous burst frequency and the burst amplitude of the Ca2+ and glutamate signals. A similar inverse relationship was observed when bath applied DAMGO reduced spontaneous burst frequency and increased the burst amplitude of Ca2+, glutamate, and GABA transient signals. However, a hypoxic challenge reduced both burst frequency and Ca2+ transient amplitude. Using a cocktail that blocked glutamatergic, GABAergic, and glycinergic transmission to indirectly measure the release of glutamate/GABA in response to an electrical stimulus, we found that DAMGO reduces the release of glutamate in the preBötC but has no effect on GABA release. This suggest that the opioid mediated slowing of respiratory rhythm involves presynaptic reduction of glutamate release, which would impact the ability of the network to engage in recurrent excitation, and may result in the opioid-induced slowing of inspiratory rhythm.

SIGNIFICANCE STATEMENT Opioids slow down breathing rhythm by affecting neurons in the preBötzinger complex (preBötC) and other brainstem regions. Here, we used cultured slices of the preBötC to better understand this effect by optically recording Ca2+, glutamate, and GABA transients during preBötC activity. Spontaneous rhythm showed an inverse relationship between burst frequency and burst amplitude in the Ca2+ and glutamate signals. Application of the opioid DAMGO slowed the rhythm, with a concomitant increase in Ca2+, glutamate, and GABA signals. When rhythm was blocked pharmacologically, DAMGO reduced the presynaptic release of glutamate, but not GABA. These data suggest the mechanism of action of opioids involves presynaptic reduction of glutamate release, which may play an important role in the opioid-induced slowing of inspiratory rhythm.

  • breathing
  • GABA
  • genetically-encoded sensors
  • iGluSnFR
  • opioids
  • respiration

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (43)
Journal of Neuroscience
Vol. 42, Issue 43
26 Oct 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
µ-Opioid Receptor Activation Reduces Glutamate Release in the PreBötzinger Complex in Organotypic Slice Cultures
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
µ-Opioid Receptor Activation Reduces Glutamate Release in the PreBötzinger Complex in Organotypic Slice Cultures
Anders B. Jørgensen, Camilla Mai Rasmussen, Jens C. Rekling
Journal of Neuroscience 26 October 2022, 42 (43) 8066-8077; DOI: 10.1523/JNEUROSCI.1369-22.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
µ-Opioid Receptor Activation Reduces Glutamate Release in the PreBötzinger Complex in Organotypic Slice Cultures
Anders B. Jørgensen, Camilla Mai Rasmussen, Jens C. Rekling
Journal of Neuroscience 26 October 2022, 42 (43) 8066-8077; DOI: 10.1523/JNEUROSCI.1369-22.2022
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • breathing
  • GABA
  • genetically-encoded sensors
  • iGluSnFR
  • opioids
  • respiration

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
  • Neural index of reinforcement learning predicts improved stimulus-response retention under high working memory load
  • Activity-dependent Nr4a2 induction modulates synaptic expression of AMPA receptors and plasticity via a Ca2+/CRTC1/CREB pathway
Show more Research Articles

Systems/Circuits

  • Neurons in Primate Area MSTd Signal Eye Movement Direction Inferred from Dynamic Perspective Cues in Optic Flow
  • Model-Based Approach Shows ON Pathway Afferents Elicit a Transient Decrease of V1 Responses
  • The Neural Basis for Biased Behavioral Responses Evoked by Galvanic Vestibular Stimulation in Primates
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.