Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex

Sandra U. Okoro, Roman U. Goz, Brigdet W. Njeri, Madhumita Harish, Catherine F. Ruff, Sarah E. Ross, Charles Gerfen and Bryan M. Hooks
Journal of Neuroscience 26 October 2022, 42 (43) 8095-8112; DOI: https://doi.org/10.1523/JNEUROSCI.0950-22.2022
Sandra U. Okoro
1University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roman U. Goz
1University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brigdet W. Njeri
1University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Madhumita Harish
1University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine F. Ruff
1University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah E. Ross
1University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles Gerfen
2National Institute of Mental Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bryan M. Hooks
1University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Intracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing. We then compared anatomic and functional connectivity based on synaptic strength from sensory cortex and thalamus. Functionally, each input innervated M1 interneurons with a unique laminar profile. Different interneuron types were excited in a distinct, complementary manner, suggesting feedforward inhibition proceeds selectively via distinct circuits. Specifically, somatosensory cortex (S1) inputs primarily targeted PV+ neurons in upper layers (L2/3) but SOM+ neurons in middle layers (L5). Somatosensory thalamus [posterior nucleus (PO)] inputs targeted PV+ neurons in middle layers (L5). In contrast to sensory cortical areas, thalamic input to SOM+ neurons was equivalent to that of PV+ neurons. Thus, long-range excitatory inputs target inhibitory neurons in an area and a cell type-specific manner, which contrasts with input to neighboring pyramidal cells. In contrast to feedforward inhibition providing generic inhibitory tone in cortex, circuits are selectively organized to recruit inhibition matched to incoming excitatory circuits.

SIGNIFICANCE STATEMENT M1 integrates sensory information and frontal cortical inputs to plan and control movements. Although inputs to excitatory cells are described, the synaptic circuits by which these inputs drive specific types of M1 interneurons are unknown. Anatomical results with rabies tracing and physiological quantification of synaptic strength shows that two main classes of inhibitory cells (PV+ and SOM+ interneurons) both receive substantial cortical and thalamic input, in contrast to interneurons in sensory areas (where thalamic input strongly prefers PV+ interneurons). Further, each input studied targets PV+ and SOM+ interneurons in a different fashion, suggesting that separate, specific circuits exist for recruitment of feedforward inhibition.

  • circuit mapping
  • interneurons
  • motor cortex
  • parvalbumin
  • rabies tracing
  • somatostatin

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (43)
Journal of Neuroscience
Vol. 42, Issue 43
26 Oct 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex
Sandra U. Okoro, Roman U. Goz, Brigdet W. Njeri, Madhumita Harish, Catherine F. Ruff, Sarah E. Ross, Charles Gerfen, Bryan M. Hooks
Journal of Neuroscience 26 October 2022, 42 (43) 8095-8112; DOI: 10.1523/JNEUROSCI.0950-22.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex
Sandra U. Okoro, Roman U. Goz, Brigdet W. Njeri, Madhumita Harish, Catherine F. Ruff, Sarah E. Ross, Charles Gerfen, Bryan M. Hooks
Journal of Neuroscience 26 October 2022, 42 (43) 8095-8112; DOI: 10.1523/JNEUROSCI.0950-22.2022
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • circuit mapping
  • interneurons
  • motor cortex
  • parvalbumin
  • rabies tracing
  • somatostatin

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Mitofusin 2 sustains the axonal mitochondrial network to support presynaptic Ca2+ homeostasis and the synaptic vesicle cycle in rat hippocampal axons
  • Severely Attenuated Visual Feedback Processing in Children on the Autism Spectrum
  • Neural Substrates of Body Ownership and Agency during Voluntary Movement
Show more Research Articles

Systems/Circuits

  • In Vivo Photoadduction of Anesthetic Ligands in Mouse Brain Markedly Extends Sedation and Hypnosis
  • Vestibular Contributions to Primate Neck Postural Muscle Activity during Natural Motion
  • Subgenual and hippocampal pathways in amygdala are set to balance affect and context processing
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.