Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Cover ArticleResearch Articles, Development/Plasticity/Repair

Preserved Motility after Neonatal Dopaminergic Lesion Relates to Hyperexcitability of Direct Pathway Medium Spiny Neurons

Ettel Keifman, Camila Coll, Cecilia Tubert, Rodrigo M. Paz, Juan E. Belforte, Mario G. Murer and Barbara Y. Braz
Journal of Neuroscience 23 November 2022, 42 (47) 8767-8779; DOI: https://doi.org/10.1523/JNEUROSCI.1992-21.2022
Ettel Keifman
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Camila Coll
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cecilia Tubert
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rodrigo M. Paz
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Juan E. Belforte
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mario G. Murer
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara Y. Braz
Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Barbara Y. Braz
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In Parkinson's disease patients and rodent models, dopaminergic neuron loss (DAN) results in severe motor disabilities. In contrast, general motility is preserved after early postnatal DAN loss in rodents. Here we used mice of both sexes to show that the preserved motility observed after early DAN loss depends on functional changes taking place in medium spiny neurons (MSN) of the dorsomedial striatum (DMS) that belong to the direct pathway (dMSN). Previous animal model studies showed that adult loss of dopaminergic input depresses dMSN response to cortical input, which likely contributes to Parkinson's disease motor impairments. However, the response of DMS-dMSN to their preferred medial PFC input is preserved after neonatal DAN loss as shown by in vivo studies. Moreover, their response to inputs from adjacent cortical areas is increased, resulting in reduced cortical inputs selectivity. Additional ex vivo studies show that membrane excitability increases in dMSN. Furthermore, chemogenetic inhibition of DMS-dMSN has a more marked inhibitory effect on general motility in lesioned mice than in their control littermates, indicating that expression of normal levels of locomotion and general motility depend on dMSN activity after early DAN loss. Contrastingly, DMS-dMSN inhibition did not ameliorate a characteristic phenotype of the DAN-lesioned animals in a marble burying task demanding higher behavioral control. Thus, increased dMSN excitability likely promoting changes in corticostriatal functional connectivity may contribute to the distinctive behavioral phenotype emerging after developmental DAN loss, with implications for our understanding of the age-dependent effects of forebrain dopamine depletion and neurodevelopment disorders.

SIGNIFICANCE STATEMENT The loss of striatal dopamine in the adult brain leads to life-threatening motor impairments. However, general motility remains largely unaffected after its early postnatal loss. Here, we show that the high responsiveness to cortical input of striatal neurons belonging to the direct basal ganglia pathway, crucial for proper motor functioning, is preserved after early dopamine neuron loss, in parallel with an increase in these cells' membrane excitability. Chemogenetic inhibition studies show that the preserved motility depends on this direct pathway hyperexcitability/hyperconnectivity, while other phenotypes characteristic of this condition remained unaltered despite the dMSN inhibition. This insight has implications for our understanding of the mechanism underlying the behavioral impairments observed in neuropsychiatric conditions linked to early dopaminergic hypofunction.

  • corticostriatal system
  • development
  • dopamine
  • in vivo recordings
  • medium spiny neurons
  • striatum

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (47)
Journal of Neuroscience
Vol. 42, Issue 47
23 Nov 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Preserved Motility after Neonatal Dopaminergic Lesion Relates to Hyperexcitability of Direct Pathway Medium Spiny Neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Preserved Motility after Neonatal Dopaminergic Lesion Relates to Hyperexcitability of Direct Pathway Medium Spiny Neurons
Ettel Keifman, Camila Coll, Cecilia Tubert, Rodrigo M. Paz, Juan E. Belforte, Mario G. Murer, Barbara Y. Braz
Journal of Neuroscience 23 November 2022, 42 (47) 8767-8779; DOI: 10.1523/JNEUROSCI.1992-21.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Preserved Motility after Neonatal Dopaminergic Lesion Relates to Hyperexcitability of Direct Pathway Medium Spiny Neurons
Ettel Keifman, Camila Coll, Cecilia Tubert, Rodrigo M. Paz, Juan E. Belforte, Mario G. Murer, Barbara Y. Braz
Journal of Neuroscience 23 November 2022, 42 (47) 8767-8779; DOI: 10.1523/JNEUROSCI.1992-21.2022
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • corticostriatal system
  • development
  • dopamine
  • in vivo recordings
  • medium spiny neurons
  • striatum

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • CIB2 and CIB3 regulate stereocilia maintenance and mechanoelectrical transduction in mouse vestibular hair cells
  • Face-selective patches in marmosets are involved in dynamic and static facial expression processing
  • Sex differences in the impact of electronic nicotine vapor on corticotropin-releasing factor receptor 1 neurons in the mouse ventral tegmental area
Show more Research Articles

Development/Plasticity/Repair

  • A Novel CCK Receptor GPR173 Mediates Potentiation of GABAergic Inhibition
  • Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation
  • Early-Life Stress Impairs Perception and Neural Encoding of Rapid Signals in the Auditory Pathway
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.