Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Maladaptive Laterality in Cortical Networks Related to Social Communication in Autism Spectrum Disorder

Andrew S. Persichetti, Jiayu Shao, Stephen J. Gotts and Alex Martin
Journal of Neuroscience 30 November 2022, 42 (48) 9045-9052; DOI: https://doi.org/10.1523/JNEUROSCI.1229-22.2022
Andrew S. Persichetti
Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andrew S. Persichetti
Jiayu Shao
Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen J. Gotts
Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alex Martin
Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alex Martin
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neuroimaging studies of individuals with autism spectrum disorders (ASDs) consistently find an aberrant pattern of reduced laterality in brain networks that support functions related to social communication and language. However, it is unclear how the underlying functional organization of these brain networks is altered in ASD individuals. We tested four models of reduced laterality in a social communication network in 70 ASD individuals (14 females) and a control group of the same number of tightly matched typically developing (TD) individuals (19 females) using high-quality resting-state fMRI data and a method of measuring patterns of functional laterality across the brain. We found that a functionally defined social communication network exhibited the typical pattern of left laterality in both groups, whereas there was a significant increase in within- relative to across-hemisphere connectivity of homotopic regions in the right hemisphere in ASD individuals. Furthermore, greater within- relative to across-hemisphere connectivity in the left hemisphere was positively correlated with a measure of verbal ability in both groups, whereas greater within- relative to across-hemisphere connectivity in the right hemisphere in ASD, but not TD, individuals was negatively correlated with the same verbal measure. Crucially, these differences in patterns of laterality were not found in two other functional networks and were specifically correlated to a measure of verbal ability but not metrics of other core components of the ASD phenotype. These results suggest that previous reports of reduced laterality in social communication regions in ASD is because of the two hemispheres functioning more independently than seen in TD individuals, with the atypical right-hemisphere network component being maladaptive.

SIGNIFICANCE STATEMENT A consistent neuroimaging finding in individuals with ASD is an aberrant pattern of reduced laterality of the brain networks that support functions related to social communication and language. We tested four models of reduced laterality in a social communication network in ASD individuals and a TD control group using high-quality resting-state fMRI data. Our results suggest that reduced laterality of social communication regions in ASD may be because of the two hemispheres functioning more independently than seen in TD individuals, with atypically greater within- than across-hemisphere connectivity in the right hemisphere being maladaptive.

  • autism spectrum disorder
  • laterality
  • resting-state fMRI
  • social communication

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (48)
Journal of Neuroscience
Vol. 42, Issue 48
30 Nov 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Maladaptive Laterality in Cortical Networks Related to Social Communication in Autism Spectrum Disorder
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Maladaptive Laterality in Cortical Networks Related to Social Communication in Autism Spectrum Disorder
Andrew S. Persichetti, Jiayu Shao, Stephen J. Gotts, Alex Martin
Journal of Neuroscience 30 November 2022, 42 (48) 9045-9052; DOI: 10.1523/JNEUROSCI.1229-22.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Maladaptive Laterality in Cortical Networks Related to Social Communication in Autism Spectrum Disorder
Andrew S. Persichetti, Jiayu Shao, Stephen J. Gotts, Alex Martin
Journal of Neuroscience 30 November 2022, 42 (48) 9045-9052; DOI: 10.1523/JNEUROSCI.1229-22.2022
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • autism spectrum disorder
  • laterality
  • resting-state fMRI
  • social communication

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
  • Neural index of reinforcement learning predicts improved stimulus-response retention under high working memory load
  • Activity-dependent Nr4a2 induction modulates synaptic expression of AMPA receptors and plasticity via a Ca2+/CRTC1/CREB pathway
Show more Research Articles

Behavioral/Cognitive

  • Neural index of reinforcement learning predicts improved stimulus-response retention under high working memory load
  • Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System
  • Accelerating maturation of spatial memory systems by experience – evidence from sleep oscillation signatures of memory processing
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.