Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Neurobiology of Disease

Decreased Modulation of Population Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection Performance in Old Mice

Kelson Shilling-Scrivo, Jonah Mittelstadt and Patrick O. Kanold
Journal of Neuroscience 7 December 2022, 42 (49) 9278-9292; DOI: https://doi.org/10.1523/JNEUROSCI.0955-22.2022
Kelson Shilling-Scrivo
1Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonah Mittelstadt
2Department of Biology, University of Maryland, College Park, Maryland 20742
3Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jonah Mittelstadt
Patrick O. Kanold
2Department of Biology, University of Maryland, College Park, Maryland 20742
3Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patrick O. Kanold
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Age-related hearing loss (presbycusis) affects one-third of the world's population. One hallmark of presbycusis is difficulty hearing in noisy environments. Presbycusis can be separated into two components: the aging ear and the aging brain. To date, the role of the aging brain in presbycusis is not well understood. Activity in the primary auditory cortex (A1) during a behavioral task is because of a combination of responses representing the acoustic stimuli, attentional gain, and behavioral choice. Disruptions in any of these aspects can lead to decreased auditory processing. To investigate how these distinct components are disrupted in aging, we performed in vivo 2-photon Ca2+ imaging in both male and female mice (Thy1-GCaMP6s × CBA/CaJ mice) that retain peripheral hearing into old age. We imaged A1 neurons of young adult (2-6 months) and old mice (16-24 months) during a tone detection task in broadband noise. While young mice performed well, old mice performed worse at low signal-to-noise ratios. Calcium imaging showed that old animals have increased prestimulus activity, reduced attentional gain, and increased noise correlations. Increased correlations in old animals exist regardless of cell tuning and behavioral outcome, and these correlated networks exist over a much larger portion of cortical space. Neural decoding techniques suggest that this prestimulus activity is predictive of old animals making early responses. Together, our results suggest a model in which old animals have higher and more correlated prestimulus activity and cannot fully suppress this activity, leading to the decreased representation of targets among distracting stimuli.

SIGNIFICANCE STATEMENT Aging inhibits the ability to hear clearly in noisy environments. We show that the aging auditory cortex is unable to fully suppress its responses to background noise. During an auditory behavior, fewer neurons were suppressed in the old relative to young animals, which leads to higher prestimulus activity and more false alarms. We show that this excess activity additionally leads to increased correlations between neurons, reducing the amount of relevant stimulus information in the auditory cortex. Future work identifying the lost circuits that are responsible for proper background suppression could provide new targets for therapeutic strategies to preserve auditory processing ability into old age.

  • aging
  • correlation
  • mouse
  • noise
  • population
  • primary auditory cortex

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (49)
Journal of Neuroscience
Vol. 42, Issue 49
7 Dec 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Decreased Modulation of Population Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection Performance in Old Mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Decreased Modulation of Population Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection Performance in Old Mice
Kelson Shilling-Scrivo, Jonah Mittelstadt, Patrick O. Kanold
Journal of Neuroscience 7 December 2022, 42 (49) 9278-9292; DOI: 10.1523/JNEUROSCI.0955-22.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Decreased Modulation of Population Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection Performance in Old Mice
Kelson Shilling-Scrivo, Jonah Mittelstadt, Patrick O. Kanold
Journal of Neuroscience 7 December 2022, 42 (49) 9278-9292; DOI: 10.1523/JNEUROSCI.0955-22.2022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • aging
  • correlation
  • mouse
  • noise
  • population
  • primary auditory cortex

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • The amyloid precursor protein modulates the position and length of the axon initial segment
  • Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome
  • Post-synaptic NMDA Receptor Expression Is Required for Visual Corticocollicular Projection Refinement in the Mouse Superior Colliculus
Show more Research Articles

Neurobiology of Disease

  • The amyloid precursor protein modulates the position and length of the axon initial segment
  • Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome
  • Early TNF-Dependent Regulation of Excitatory and Inhibitory Synapses on Striatal Direct Pathway Medium Spiny Neurons in the YAC128 Mouse Model of Huntington's Disease
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.