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Slow oscillations are an emergent activity of the cerebral cortex network consisting of alternating periods of activity (Up
states) and silence (Down states). Up states are periods of persistent cortical activity that share properties with that of under-
lying wakefulness. However, the occurrence of Down states is almost invariably associated with unconsciousness, both in ani-
mal models and clinical studies. Down states have been attributed relevant functions, such as being a resetting mechanism or
breaking causal interactions between cortical areas. But what do Down states consist of? Here, we explored in detail the
network dynamics (e.g., synchronization and phase) during these silent periods in vivo (male mice), in vitro (ferrets, ei-
ther sex), and in silico, investigating various experimental conditions that modulate them: anesthesia levels, excitability
(electric fields), and excitation/inhibition balance. We identified metastability as two complementary phases composing
such quiescence states: a highly synchronized “deterministic” period followed by a low-synchronization “stochastic” pe-
riod. The balance between these two phases determines the dynamical properties of the resulting rhythm, as well as the
responsiveness to incoming inputs or refractoriness. We propose detailed Up and Down state cycle dynamics that bridge
cortical properties emerging at the mesoscale with their underlying mechanisms at the microscale, providing a key to
understanding unconscious states.
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Significance Statement

The cerebral cortex expresses slow oscillations consisting of Up (active) and Down (silent) states. Such activity emerges not
only in slow wave sleep, but also under anesthesia and in brain lesions. Down states functionally disconnect the network, and
are associated with unconsciousness. Based on a large collection of data, novel data analysis approaches and computational
modeling, we thoroughly investigate the nature of Down states. We identify two phases: a highly synchronized “deterministic”
period, followed by a low-synchronization “stochastic” period. The balance between these two phases determines the dynamic
properties of the resulting rhythm and responsiveness to incoming inputs. This finding reconciles different theories of slow
rhythm generation and provides clues about how the brain switches from conscious to unconscious brain states.

Introduction
Slow oscillations are a multiscale phenomenon that dominate
cerebral cortex dynamics not only in slow wave sleep but also in
a variety of situations including deep anesthesia, disorders of
consciousness and perilesional activity. They also emerge in iso-
lated gyri or slabs in vivo and cortical slices in vitro, such that
this activity has been proposed as the default activity pattern
of the cortical network (for review, see Sanchez-Vives et al.,
2017). This is a network emergent pattern that results from the
integration of cellular and network properties, which shape this
activity and its propagation as a slow wave (Massimini et al.,
2004; Capone et al., 2019). For this reason, the resulting pattern
of slow wave activity can vary within a relatively wide spectrum,
tightly depending on the physiological, pharmacological, or path-
ologic state of the network.
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Slow oscillations consist of the alternation of Up states, active
periods with neuronal firing, and Down states or periods of silence,
also known as “off-periods” (Vyazovskiy et al., 2011; Nir et al.,
2011). Up states share properties with wakefulness: persistent activ-
ity generated by recurrent networks with comparable firing rates
(McCormick et al., 2003; Constantinople and Bruno, 2011), even-
tual synchronization in b and g frequencies (Hasenstaub et al.,
2005; Compte et al., 2008; Ruiz-Mejias et al., 2011), or a balanced
excitation and inhibition (Shu et al., 2003; Compte et al., 2009).
Indeed, Up states have been referred to as “fragments of wakeful-
ness” (Destexhe et al., 2007), since in a sleeping or anesthetized
brain, this seemingly awake activity can be recorded at intervals.

So, what separates these “windows into wakefulness” from
actual wakefulness and thus from conscious states? The answer
is the silent periods in between, or Down states. Intracellular
recordings from cortical neurons transitioning between wake-
fulness and slow wave sleep (Steriade et al., 2001) or between
wakefulness and anesthesia (Constantinople and Bruno, 2011)
provide evidence that the main difference associated with the
collapse of wakefulness is the appearance of these quiescent
Down states. Down states are not only a temporal interruption
in the information processing and a reset of the system that has
been associated with different metabolic and recalibration
functions (Tononi and Cirelli, 2003), they also imply a spa-
tial interruption of functional connectivity that breaks the
causal interactions between areas (Tononi and Massimini,
2008; Pigorini et al., 2015). The role of Down states, or “off-
periods,” on consciousness levels has been thoroughly stud-
ied, since evoking prominent “off-periods” using transcra-
nial magnetic stimulation in humans has been consistently
associated with the absence of consciousness in unresponsive
patients (Rosanova et al., 2018).

Off-periods can also be evoked in the perilesional area of
awake stroke patients (Sarasso et al., 2020), and they can also per-
colate to distant connected areas where they disrupt physiologi-
cal activity. Loss of consciousness associated with focal limbic
seizures has also been associated with slow waves (Yue et al.,
2020). Even in awake healthy brains, the propagation of isolated
sleep-like slow waves causes lapses of attention (Andrillon et al.,
2021), evidencing their disruptive impact on processing.

All this evidence suggests that a detailed understanding of Down
states is important since these silent periods are critical for cortical
function and for the cancellation of conscious processing. In the
current study, we have used novel analytical approaches for the
analysis of Up and Down state transitions and found that Down
states are not only silent periods but have a dynamical structure
including “deterministic” and “stochastic” stages. With this, we
define a cycle for slow oscillations that is compatible with different
frequencies of oscillation and that provides a novel framework that
connects network properties and cellular mechanisms.

Materials and Methods
Experimental methods
Extracellular local field potential (LFP) recordings from different prepa-
rations were used. The in vivo data were recorded with a 32-channel
electrode array placed on the cortical surface of deeply anesthetized adult
male C57BL/6J mice (N=5, Fig. 1A; for details, see Dasilva et al., 2021).
The in vitro recordings were obtained from a 16-channel electrode array
placed on the top of slices of ferret visual cortex (N= 6 slices from two
ferrets either sex; Fig. 1B; details in Capone et al., 2019). All procedures
were approved by the Ethics Committee at the Hospital Clinic of
Barcelona and were conducted to the standards laid down in Spanish
regulatory laws (BOE 34/11370-421, 2013) and in the European Union
directive 2010/63/EU. The in silico data were measured from numerical

simulations of a spiking neural network model reproducing the activity
of a cortical slice (Fig. 1C) as previously shown (Capone et al., 2019), fur-
ther details about the model can be found below (see Computational
methods: spiking neuron networks).

Computation of the phase signal
The activity of a system of oscillators can be sufficiently represented by
its circular phase alone, according to previously published work
(Kuramoto, 1984). For this reason, to understand the collective behavior
of a network of oscillators, here we start by computing the instantaneous
phase at each network node.

The instantaneous phase at each network node was estimated via the
analytic signal framework (Le Van Quyen et al., 2001; Muller et al.,
2014). This approach entails transforming a real-valued time series into
a complex phasor, whose modulus (length) and argument (angle) in the
complex plane represent the signal instantaneous amplitude and phase,
respectively. Given the time series xiðtÞ, with i corresponding to the re-
cording channel, its analytic representation is given by:

zi tð Þ ¼ xi tð Þ1 jH½xiðtÞ�;

where H xi tð Þ½ �denotes the Hilbert transform of the signal xi tð Þand the in-
stantaneous phase of the time series can be obtained as follows (Fig. 1D,E):

w i tð Þ ¼ tan�1 Im zi tð Þ½ �
Re zi tð Þ½ �

� �
:

Similar to Davis et al. (2020), to preserve the spectral content of the
signals and obtain a representation that captures the dominant phase
fluctuations of the signals over time, avoiding distortions and artifacts
introduced by filtering, we applied the Hilbert transform to broadband
signals [multiunit activity (MUA) and LFP]. We did not resort to any
narrow-band filtering of MUA and LFP on purpose. In this way we
aimed at having an unbiased approach in determining the time scales
associated with the adaptation-driven recovery phase; that is, the one
characterizing the determinist stage of the Down states. This comes with
a caveat in considering as reliable the phase w i tð Þ of the unfiltered sig-
nals when they differ from smooth sinusoidal waveforms as in the case
of the relatively fast MUA Up-Down transitions.

Network synchronization, Kuramoto order parameter (KOP)
The instantaneous phase computed as explained above was used to
quantify the network-level phase synchrony as a function of time (Le
Van Quyen et al., 2010; Yang et al., 2012). According to Strogatz
(Strogatz, 2001) and Acebrón and colleagues (Acebrón et al., 2005), we
can consider our networks as systems composed of weakly coupled,
nearly identical, interacting limit-cycle oscillators, where all the oscilla-
tors exert a phase-dependent influence on the others. When the frequen-
cies of the oscillators are too diverse, they are not able to synchronize
and the system behaves incoherently, whereas when the coupling is
strong enough, the oscillators behave in a synchronized way (Arenas et
al., 2008). Kuramoto (Kuramoto, 1984) proposed a mathematical model
to outline network synchronization, which is suited to the mean field
approach, where the dynamics of the neuronal population is measured
by the macroscopic complex order parameter whose modulus measures
the phase coherence of the population over time. The use of the
Kuramoto model to quantify the degree of phase synchrony of a network
of oscillators provides an effective method in a simple algebraic form
able to capture the essential features of a dynamical system. The KOP is
a time-resolved measure of phase synchrony that is widely used in neu-
roscience since it allows us to compute synchronization in specific fre-
quency bands; for example, bands associated with specific brain rhythms,
and it is not affected by noisy fluctuations in the amplitude of the signals.
With respect to other linear measures; for example, cross-correlation and
coherence, it has the advantage of being only sensitive to the phase of
the signals (i.e., amplitude independent), and of having a better time
resolution (Quiroga et al., 2002), while also being easier to compute
than nonlinear measures as mutual information, transfer entropy and
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Granger causality. The values r ¼ 1 and r ¼ 0 describe the limits in
which all oscillators are either phase locked or move incoherently, respec-
tively. We considered each of our recording electrodes in the experimental
preparations as a node of the network, and estimated the instantaneous
synchrony among the nodes computing the KOP given by:

r tð Þ ¼ 1
n

����
Xn

j¼1

e�iw jðtÞ
����;

where n is the number of recording channels and w j tð Þ is the instantane-
ous phase of each of them defined above. The same was done in the
simulated data, considering each module of the model as a node of the

network, and estimating the instantaneous synchrony among them.
Periods of high phase synchrony (i.e., low phase difference) corre-
sponded to values of r close to 1, while periods of low network synchro-
nization corresponded to values of r close to 0. To obtain a visual
representation of network synchronization over time, we imaged the in-
stantaneous phases versus time using dynamic phase histograms as pre-
viously shown (Yang et al., 2012).

Dynamical parameters estimation
We estimated the duration of the Down states in each SO cycle from the
MUA as previously shown (Ruiz-Mejias et al., 2011). Then, we estimated
the time constant of the LFP synchronization dynamics in all the experi-
mental conditions and in the simulated data. To do so, we extracted

Figure 1. Dynamics phase histograms and state related synchronization in in vivo, in vitro, and in silico cortical networks. Schematic representation of the in vivo (A), in vitro (B), and in silico (C)
cortical networks, the orange traces represent the extracellular local field potential (LFP) recorded by one electrode or one node of the network (orange circle). Representation of dynamic phase histo-
grams, the corresponding Kuramoto order parameter (KOP) and cortical activity for multiunit activity (MUA) signals in vivo (Da), in vitro (Ea), and in silico (Fa), and LFP signals in vivo (Db), in vitro
(Eb), and in silico (Fb). Orange and gray shades represent the “deterministic” and “stochastic” periods of the Down states, respectively. Boxplots of the average KOP during Up and Down states of
the MUA in orange and the LFP in purple: in vivo (Dc, N=5 mice, n= 75 Down states Wilcoxon signed-rank test in vivo: Up vs Down p=0.04), in vitro (Ec, N=6 slices, n=478 Down states
Wilcoxon signed-rank test in vitro: Up vs Down p=0.02), and in silico (Fc, N=5 simulations, n=113 Down states Wilcoxon signed-rank test in silico: Up vs Down p=0.04).
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from the dynamic phase histograms Figure 1Db,Eb,Fb phase related to
the maximum counts over time (Fig. 4D). Using this time series, we fit-
ted an exponential curve,

f tð Þ ¼ A 1� e�
t
tð Þ1c;

in the time periods right after each Up-to-Down transition (Fig. 4D, or-
ange area) and extracted the variable t which is the characteristic time
constant of the exponential (computed in Python using scipy.optimize.
curve_fit). Note that in the simulated data the t parameter is known,
therefore we used the simulation to validate our fitting method, compar-
ing the estimated and the actual t (Fig. 4E, bottom right). According to
this validation, and to avoid high fitting errors, we included here only
the estimations in which one standard deviation errors on the parame-
ters’ estimation is lower than 1.

Computational methods: spiking neuron networks
We modeled a cortical slice using a spiking neural network; details about
single neuron parameters and network connectivity can be found in
Capone et al. (2019). Briefly, the network model is composed of a two-
dimensional 7 � 20 lattice of interacting cortical modules.

Each module is a subnetwork of two homogenous populations of 502
excitatory and 126 inhibitory leaky integrate-and-fire (LIF) neurons. The
membrane potential Vi tð Þ of the ith neuron evolves according to
Vi

_ ¼ �Vi=t 1 Ii � ai, where IiðtÞ is the input synaptic current and aðtÞ is
an activity-dependent hyperpolarizing current present only in excitatory neu-
rons, responsible for spike-frequency adaptation. The decay constant t of the
membrane potential is 20 and 10ms for excitatory and inhibitory neurons,
respectively. The synaptic current is a linear combination of the spikes emitted

by the presynaptic neurons: Ii tð Þ ¼
X

k

J ikd t � tk � dikð Þ1 Iext , with

Figure 2. Multiunit activity (MUA) and local field potential (LFP) synchronization dynamics. A, In vivo 3D representation of the phase, amplitude, and Kuramoto order parameter (KOP) corre-
sponding to the slow oscillation cycle depicted in the 2D insert in MUA (Aa) and LFP (Ab). B, In vitro 3D representation of the phase, amplitude, and KOP corresponding to the SO cycle depicted
in the 2D insert in MUA (Ba) and LFP (Bb). C, In silico 3D representation of the phase, amplitude, and KOP corresponding to the slow oscillation cycle depicted in the 2D insert in MUA (Ca)
and LFP (Cb). The points are colored according to time, the purple coincides with the Down-to-Up transition, turquoise corresponds to the Up state, violet is the Up-to-Down transition, orange
is the beginning of the Down state and the rest of the Down state is in gray; gray shades represent the projections of the cloud on each plane.
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additional contribution Iext given by the spikes emitted by external neurons,
modeled as Poisson processes with spike rate Cext�ext that is 1466Hz for the
“foreground,” 1511 Hz for the “background” and 2100 Hz for the inhibitory.
Each spike emitted at time tk by the kth presynaptic neuron contributes with
an instantaneous current Jik (synaptic efficacy). Spikes were delivered with a
transmission delay dik. The current aiðtÞ follows the first-order dynamics

t a ai_ ¼ �ai1gat a

X
i

d ðt � tiÞ. In the absence of emitted spike by the

ith neuron, the adaptation current decays with a time constant t a ¼ 1 s. The
adaptation strength ga ¼ 0:06mV/ms determines the sudden increase in ai
when a spike is emitted. We also modulated the decay time t a of the adapta-
tion current by setting sequentially the values f1; 2; 2:5; 3; 3:5; 4g s every
100 s. In doing so, we fixed the mean adaptation current by changing the ad-
aptation strength while keeping constant the product t aga. Neurons emit a
spike when V tð Þ crosses the threshold u ¼ 20mV, after which the potential
reset to 15mV during an absolute refractory period of 2 and 1ms for excita-
tory and inhibitory neurons, respectively. The connectivity (i.e., the probabil-
ity of having two neurons synaptically coupled) is determined by the position
of the postsynaptic module in the lattice, and by the relative distance with the
presynaptic population in the lattice (Capone et al., 2019). The connectivity is
not homogeneous in space, aiming at modeling a strip of more excitable
assemblies representing layer five neurons. Numerical simulations of the
model network were performed in NEST (Kunkel et al., 2017).

In order to use the same analytical approach developed for in
vitro and in vivo recordings, we transformed the simulated activity
(i.e., the emitted spikes) in an in silico representation of MUA and
LFP. The MUA is computed starting from the firing rate of the fore-
ground excitatory neurons �fg tð Þand adding a proper white noise
z ðtÞ with hz tð Þi ¼ 0:3 and hz 2 tð Þi ¼ 3 to reproduce the background
fluctuations observed in the experiments. LFP is computed as a lin-
ear combination of the average (across neurons) incoming currents
afg ¼ hai tð Þi (adaptation-related) and Ifg ¼ hIi tð Þi to the foreground
excitatory neurons in a cortical module, while adding a noise hðtÞ with
zero mean and variance hh 2 tð Þi ¼ h0:25ð5afg tð Þ � Ifg tð ÞÞ2i, resulting in
the following equation: LFP ¼ 5afg � Ifg1h .

This network configuration is the one used to obtain in silico control
simulations (N=5). We operated several changes to investigate how dif-
ferent microscopic and mesoscopic features of the system affect the
properties of the spontaneous slow-wave activity. To model the effects of
a stimulation by a homogeneous direct current (DC) field applied to a
cortical slice, the synaptic input current was modulated by adding an
extra DC current IDC ¼ f�1;�0:5;�0:25;12:5;15;110;120gpA to
make the membrane potential more or less polarized (DC– and DC1
simulations; D’Andola et al., 2018).

Data availability
Data presented in the main figures and in extended data figures are
available in the data source files in Zenodo (https://doi.org/10.5281/
zenodo.5070570). Human Brain Project Neuroinformatics Platform,
doi:10.25 493/WKA8-Q4T. Raw data are available on reasonable request,
owing to their size. Source data are provided with this paper.

Code accessibility
Numerical simulations of the model network were performed in
NEST (2.12.0, doi:10.5281/zenodo.259534) on the high-perform-
ance computing facility hosted by the Istituto Superiore di Sanità.
Python code of the simulation is freely available in EBRAINS
Knowledge Graph where all the parameters and information of the
network design are fully accessible (https://kg.ebrains.eu/search/
instances/Model/db8c315ee902bee98025d8c78d4a0e0432b92ec0).

Results
To investigate the cerebral cortex network dynamics and
underlying mechanisms during Up and Down states, we stud-
ied in parallel three cortical networks: in vivo, in vitro, and in
silico, while expressing slow oscillations. We focused on the
dynamic properties of Down states and their relationship with

the microscale and mesoscale networks, both in control condi-
tions and under different experimental manipulations, which
allowed us a broader investigation of the key elements govern-
ing this cortical dynamic space.

Network dynamics revealed by input versus output
synchronization
First, to investigate the network dynamics occurring at different
scales in vivo, in vitro, and in silico (Fig. 1A; Fig. 3), we com-
puted the time evolution of the phase and the synchronization
during the oscillatory cycles (i.e., during ongoing slow-wave ac-
tivity). To determine the dominant phase fluctuations of the
signals over time, we calculated the instantaneous phase at each
network node via the analytic signal framework (Le Van Quyen
et al., 2010; Muller et al., 2014) applying the Hilbert transform
to broadband signals [multiunit activity (MUA) and local field
potential (LFP); Davis et al., 2020]. The instantaneous phase
was used to quantify the network-level phase synchrony as a
function of time (Le Van Quyen et al., 2001; Yang et al., 2012).
We considered each of our recording electrodes in the experi-
mental preparations as a node of the network and estimated the
instantaneous synchrony among the nodes computing the
Kuramoto order parameter (KOP; Materials and Methods).

To capture the multiscale processes underlying network activ-
ity, we studied the synchronization dynamics at two different lev-
els: between neuronal populations in the LFP signal and the
MUA, considered as signals mainly made of synaptic input cur-
rents and of the output action potentials generated by the neu-
rons, respectively (Buzsáki et al., 2012). We show the network
phase time course with dynamic phase histograms (Fig. 1D). In
it, the color scale indicates the number of electrodes with a given
phase (vertical axis) at a given time (horizontal axis). Phase bun-
dles marked by dark pixels over time indicate many sites with
the same phase (in-phase locking; Yang et al., 2012).

The dynamic phase histograms reveal differences in the syn-
chronization dynamics of the MUA and LFP, supporting the
idea that the two components of the electrophysiological activity
provide different information about network dynamics. The
MUA signals exhibited patterns of synchronization characterized
by in-phase locking during the Up states and thus high synchro-
nization (high KOP; Fig. 1Da,Ea,Fa). This high synchronization
was partially maintained during the early phases of the Down
state, but progressively decayed, displaying asynchronous “sto-
chastic” behavior in the later phases with a significant decrease of
the KOP. This result was confirmed at a population level, where
we computed the average network synchronization associated
with the Up and Down states, respectively, as shown in Figure
1Dc,Ec,Fc. We found that, on average, the KOP of the MUA is
high during the Up states, but significantly decreases on average
during the Down states, all in vivo, in vitro, and in silico (Fig.
1Dc; Wilcoxon signed-rank test in vivo: Up vs Down p= 0.04;
Fig. 1Ec, in vitro Up vs Down: p=0.02; Fig. 1Fc, in silico Up vs
Down: p=0.04).

To study the dynamics arising in the extracellular voltage
resulting from the combination of synaptic activity and neuronal
transmembrane processes (i.e., ionic channels), we also studied
the network synchronization of the LFP signal. Here, we found
an intermediate level of synchronization associated with the Up
states (KOP mean 6 standard deviation (SD): in vivo 0.656 0.14,
in vitro 0.646 0.10, in silico 0.626 0.01). Interestingly, in the LFP,
the absolute difference between the Up and Down synchronization
was not as consistent as in the MUA: no significant difference
was found between channels in vivo (Fig. 1Dc), while we found
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significantly higher synchronization in the Down states in vitro
(Fig. 1Ec), and significantly lower synchronization during Down
states in silico (Fig. 1Fc).

The explanation for this diversity can be found when explor-
ing the dynamics of Down states: as suggested by the MUA anal-
ysis, the LFP clearly expressed a metastable dynamics, such that
the network transiently persists in a quasi-stationary state, tem-
porarily failing to express an ergodic wandering of its phase
space until a sudden and stereotyped (Down-to-Up) transition
drives it into another metastable condition (the Up state; Yang
and Tang, 2000). The metastability of the Down states consists of
the coexistence of two different states of equilibrium. As such,
the metastable Down states were characterized by two phases: (1)
a sustained period of high synchronization immediately after the
Up-to-Down transition, where the collective phase behavior
shows an exponential trend and the KOP is close to 1 (Fig. 1,
orange); and (2) a second period characterized by a loss in net-
work synchronization, in which the collective phase randomly
fluctuates between plus and minus p (Fig. 1, gray). According
to previously proposed models, a random fluctuation in the
second period would be critical to trigger the subsequent Up
state (Compte et al., 2003; Mattia and Sanchez-Vives, 2012;
Sancristóbal et al., 2016; Jercog et al., 2017; Capone et al.,
2019; Levenstein et al., 2019). Given the properties of these
two periods, we decided to name these stages “deterministic”
and “stochastic,” respectively.

To investigate in depth the metastability of Down states as
well as the differences in the synchronization dynamics in the
MUA and LFP, we zoomed into single slow oscillation (SO)
cycles. The 3D representation of a signal amplitude, phase and
synchrony over time provides significant insights into the dy-
namics of the network activity in this framework. In Figure 2, we
show a comparison of the one-cycle dynamics of MUA and LFP.
Independently of the network (in vivo, in vitro, in silico), high
values of MUA (i.e., the Up states) correspond to periods of high
synchronization (purple and turquoise points). After the end of
the Up state, and once the firing rate is collapsed, the synchrony
is progressively lost (in orange), KOP decreases and transitions
into a “stochastic” phase regime characterizing the Down states
in the MUA (Fig. 2Aa,Ba,Ca, gray points).

Conversely, in the LFP, the period immediately after the Up-
to-Down transition, thus the beginning of the Down state (in or-
ange), is still characterized by a high synchronization with a
KOP� 1, highlighting again the presence of the “deterministic”
stage at the beginning of the Down state at the local population
level. This “deterministic” state then transitions toward a “sto-
chastic” one (in gray), which will eventually lead to the next Up
state. Thus, we demonstrate that it is not possible to distinguish
the different stages of the metastable quiescent states by looking
at the MUA synchronization dynamics alone, stressing the im-
portance of the simultaneous recording and analysis of the LFP
and MUA signals.

Characteristic time scales of the metastable Down states
The synchronization analysis at the level of neuronal popu-
lations in the LFP revealed the existence of a metastable
dynamic during the Down states. A “deterministic” and a
“stochastic” period were identified in this order and with a
respective duration that could vary depending on the system
or the experimental manipulations. The “deterministic” stage
is the one arising immediately after the Up-to-Down transi-
tion. During this stage, we observed a correlation between the
synchronization dynamics and the strength and time course of

the afterhyperpolarization that follows the end of the Up states
(Compte et al., 2003). Accordingly, we propose here that it
could be possible to infer dynamical features at the microscale;
that is, the evolution of the afterhyperpolarization following
Up states (Sanchez-Vives and McCormick, 2000; Sanchez-
Vives et al., 2010); through the study of macroscopic variables,
such as the time constant of network synchronization. To quanti-
tatively characterize these phenomena, we estimated the time con-
stant of the exponential phase growth (t ; Fig. 4D, orange area; see
Materials and Methods) during the “deterministic” stage of the
Down states. This estimation was done for cortical networks in
vivo, in vitro, and in silico.

For the in silico network, we modeled a cortical slice using a
network of spiking neurons (single neuron parameters and net-
work connectivity as previously shown (Capone et al., 2019).
Briefly, the network model is composed of a two-dimensional
7� 20 lattice of interacting cortical-like modules. Each module
is composed of excitatory (80%) and inhibitory (20%) neurons.
Excitatory neurons incorporated activity-dependent afterhyper-
polarizing currents underlying spike-frequency adaptation. In
order to use the same analytical approach developed for in vitro
and in vivo recordings, we transduced the simulated activity
(i.e., emitted spikes) in an in silico representation of MUA and
LFP (for details, see Materials and Methods). We modulated
the decay time t a of the adaptation current and in doing so, we
fixed the mean adaptation current by changing the adaptation
strength.

The estimation of t used in vivo, in vitro, and in silico was vali-
dated by computing the Pearson correlation and the residual sum
of squares (RSS) of the regression between the real t a set in the
simulated neurons and the one estimated from the in silico LFP syn-
chronization (Pearson correlation=0.97, p, 0.001, RSS=2.35; Fig.
4E, bottom right panel). The significant linear relationship between
the single-neuron parameter t a and the synchronization decay con-
stant t of the whole network provided an unexpected opportunity
to bridge the gap between experimental observations at the macro-
scale and the microscopic parameters of the system.

Through a multiscale exploration of the in vitro cortical prep-
arations, we verified that the t estimated at the whole network
level is linearly correlated with the one estimated in a single tri-
ode of the recording array (Fig. 3: Pearson correlation= 0.64,
p= 0.04; Fig. 3Ba: Pearson correlation= 0.59, p= 0.003; Fig. 3Ca:
Pearson correlation= 0.56, p= 0.001), that is in turn correlated
with the exponential decay time constant directly estimated from
the LFP trace of a single channel (Fig. 3Ad,Bd,Cd). Our results
are represented here as continuous probability density curves
(Python seaborn.kdeplot) showing the distribution of Down state
duration and t obtained through a kernel density estimation
(KDE). We thus show that neuronal properties as the character-
istic time constant of the adaptation—and associated afterhyper-
polarization currents (Compte et al., 2003)—may be estimated at
network level, highlighting the scalability of such phenomena in
both experimental and simulated environments.

When comparing the in vivo, in vitro, and in silico joint distri-
butions of the Down state durations and t , time constants of the
network synchronization (Fig. 4F), we found a much larger range
of Down state durations and t in vivo under deep anesthesia
(mean 6 SD: Down duration 18.86 7.8 s, t duration 2.16 1.5 s)
with respect to the in vitro (mean 6 SD: Down duration
2.96 1.3 s, t duration 0.956 0.61 s) and in silico cases (Down
duration 9.46 3.9 s, t duration 1.356 0.13 s).

To be able to explain the Down state metastability in different
systems at various scales, we performed a linear regression analysis
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between the Down duration and t . Our results show that a signifi-
cant correlation between the two parameters is present when the
metastable quiescent dynamics are dominated by the “determinis-
tic” period, which is more common in the control conditions in
vitro, as seen in Figure 1Eb. For in vitro cortical networks, the rela-
tionship between t and Down states (0.51–8.42 s) was of R2 =
0.34 (RSS=681, P ¼ 10�15; Fig. 4G).

The case of Down states in vivo included a much larger range
of Down state durations (0.76–43.2 s) and the t was significantly
larger than in vitro, with an average value of 2.46 1.5 s. Even
when in vivo Down states were characterized by both “determin-
istic” and “stochastic” stages (Fig. 1Db), the “deterministic” stage
still ruled the Down states to some extent, although with a
slightly lower correlation with respect to the in vitro case (R2 =
0.29, RSS= 9000, p= 0.01) (Fig. 4G). This positive relationship
was almost nonexistent in the in silico cortical network model
(R2 = 0.14, RSS= 2 � 103, p= 0.11) (Fig. 4G), suggesting that the
correlation between Down state duration and t may be used as a
relevant variable in the study of the cellular and network mecha-
nisms dominating cortical off-period dynamics.

The modulation of cortical activity reveals state-dependence
of Down state metastability
We have shown that different cortical networks express differ-
ent degrees of metastability in Down states, conveyed by the
synchronization dynamics of neuronal pools in the LFP. By
examining the characteristics of each network, we systemati-
cally observed that the linear regression between the mean val-
ues of KOP in each Down state and the Down state duration
revealed a significant negative correlation (Fig. 4A,B,C) shorter

Down states are more synchronized than longer ones. Thus, the
KOP is high when the Down states have short durations and
their dynamics is dominated by the afterhyperpolarizing periods
(“deterministic” stage), while the KOP decreases when the Down
states have longer durations and the network has the time to
desynchronize and shows “stochastic” fluctuations (stochastic
stage). Still, we will show below that there can be exceptions to
this rule, with specific experimental manipulations that enhance
afterhyperpolarization. In light of these results, we speculate that
the metastability of the Down states is a state-dependent phe-
nomenon that varies with the dynamical conditions independ-
ently of the network structure and observation scale, which is
reflected in the overall degree of network synchronization.

Exogenous modulation of Down state metastability and
tuning of system dynamics
To explore a wider spectrum of cortical dynamics and to assess
metastability quantitatively, we introduced here some experi-
mental manipulations that vary the duration of Down states and
thus the cortical dynamics. We did this in the three networks: in
vivo, in vitro, and in silico.

In vivo, we analyzed the emergent cortical dynamics under
three different levels of anesthesia (Fig. 5), which provided
us with a significant modulation of the SO frequency (Fig.
5C) and Down state duration, as we have described previ-
ously (De Bonis et al., 2020; Dasilva et al., 2021). The three
levels of anesthesia expressed different Down state durations
(Down duration (mean6 SD): Deep anesthesia: 18.826 7.76 s;
Mid anesthesia level: 5.356 1.02 s; Light anesthesia level:
1.816 1.01 s; Friedman test p=0.006, Wilcoxon signed-rank test:

Figure 3. Whole network versus local network dynamics estimation. Scatterplots showing the linear correlation between the t estimated at the whole network level and the one estimated
in a single triode in vitro (i.e., three electrodes placed close to each either in the 16-channels MEA used for in vitro recording, see Materials and Methods), in three different slices (Aa: Pearson
correlation = 0.64, p= 0.04; Ba: Pearson correlation = 0.59, p= 0.002; Ca: Pearson correlation = 0.56, p= 0.001). Kernel density estimation (KDE) of in vitro Down durations versus t esti-
mated at whole network level in the same three slices (Ab, Bb, Cb). KDE of in vitro Down durations versus t estimated using data from one triode (see scheme above) in the same three slices
(Ac, Bc, Cc). KDE of in vitro Down durations versus t estimated using data from one recording channel (see scheme above) in the same three slices (Ad, Bd, Cd).
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p, 0.05). This experimental manipulation resulted in significantly
different time constants of synchronization (Fig. 5B,D), such that
deep anesthesia had the longest and light anesthesia the shortest t
and Down state durations (t duration mean6 SD: Deep anesthe-
sia: 2.366 1.53 s; Mid anesthesia level: 1.426 1.09 s; Light anes-
thesia level: 0.726 0.94 s). The correlation between t and Down
state duration significantly increased when moving from deep

anesthesia to lighter anesthesia states, the light levels of anesthesia
expressing the highest correlation: shortest Down states of high
regularity (Tort-Colet et al., 2021) correspond to a cycle sharply
controlled by the “deterministic” stage of the Down state.

In vitro we used two experimental manipulations to modu-
late the Down state duration. First, the modulation of slow os-
cillatory activity by using constant electric fields of different

Figure 4. Metastability of the Down state and its characteristic time scale. Correlation between the mean Kuramoto order parameter (KOP) of the LFP during the Down states, and the
Down state duration. Each point in the figures represents a single Down state, where the modulation of its duration was obtained through varying anesthesia in vivo (A; R2 = �0.45, p= 1e-
29), using DC fields of different polarities in vitro (B; R2 =�0.1, p= 0.02) and changing model’s parameters in silico (C; R2 =�0.9, p= 1e-93). D, t estimation method: bottom panel shows
the local field potential (LFP) extracted from one module of a simulated network (in silico); upper panel shows the corresponding time evolution of the maximum of the LFP phase histogram;
the gray area corresponds to the “deterministic” stage of the Down state where we estimated the t , while the pink area corresponds to the “stochastic” stage. E, Example of exponential fitting
for t estimation in vivo (top left), in vitro (bottom left), and in silico (top right); regression plot of the real t versus the estimated t in silico with residual sum of squares (RSS) of 1.46. F,
Kernel density estimation (KDE) of Down durations versus t in vivo, in vitro, and in silico. G, Linear correlation between Down duration and t in vivo (RSS = 9e103), in vitro (RSS = 681), and
in silico (RSS = 2e103).
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polarities (13 and �3 V/m). Exogenous electric fields vary the
neuronal membrane potential (0.5mV per 2V/m; Fröhlich and
McCormick, 2010) causing a net depolarization/hyperpolariza-
tion in pyramidal neurons. The variation of direct current (DC)
causes an exponential modulation of the slow oscillatory fre-
quency in cortical slices that we have described in detail previ-
ously (Barbero-Castillo et al., 2019 and D’Andola et al., 2018;
Fig. 6A). With positive DC stimulation, we obtained a decrease
in Down state duration and an increase in oscillatory frequency,
while negative DC stimulation induced an increase in Down
duration and a decrease in oscillatory frequency with respect
to the control condition (Down duration mean 6 SD: Control:
2.896 1.28 s; Positive DC: 1.446 0.46 s; Negative DC:
6.366 3.11; Fig. 6B,C). The linear regression analysis reveals a
lack of significance in the t versus Down state duration for con-
trol and DC� (Fig. 6D). However, DC1, which corre-
sponds to the highest frequency of slow oscillations,
displayed an R2 of 0.39 (p = 0.03), being a situation with
short and mostly “deterministic” Down states that tightly
control the triggering of the subsequent Up state and reminis-
cent of light anesthesia.

However, is it that simple? Are shorter Down states invari-
ably and tightly bound to a highly “deterministic” interval?
Our second manipulation in vitro shows that this physiologi-
cal relationship, which dominates in control states, can be
altered in nonphysiological conditions. In this case, departing
from the control slow oscillation at a frequency of 0.36 6
0.09Hz, we blocked GABAA receptors using bicuculline

methiodide (BMI). The blockade of fast inhibition led to highly
synchronized Up states of lower frequency, which were followed
by increasingly prominent afterhyperpolarizations (Fig. 6E), as
we have previously described (Sanchez-Vives et al., 2010;
Barbero-Castillo et al., 2021). The t versus Down state regression
analysis (Fig. 6H) revealed a highly significant relation for 1 mM

BMI, despite corresponding to the longest Down states. This
finding reveals that it is not simply the duration of the Down
states, but the mechanism underlying this duration that is
critical: when inhibition is blocked, the afterhypolarization
increases in amplitude (Fig. 6E), corresponding to a larger
intracellular afterhyperpolarization attributed to potassium
currents (Sanchez-Vives et al., 2010). This is highly sugges-
tive of the mechanism bridging cellular and network proper-
ties during Down states.

Finally, in silico we modulated the Down state duration simu-
lating the excitability changes posed by positive and negative DC
stimulation. We did this by modulating the synaptic input cur-
rent (Down duration mean 6 SD; Control: 9.46 3.9 s; positive
DC: 3.16 1.5 s; negative DC: 13.76 8.8 s; Fig. 7A,B). As shown
for the experiments, the frequency of the oscillations increased
with increased excitability or positive DC (and decreased with
negative DC; Fig. 7C). The relation between t and Down state
duration was absent for decreased excitability (negative DC; Fig.
7D), with long Down states and thus longer “stochastic” periods.
The strongest relationship was, as for the data, for positive DC
(R2 = 0.64; p, 0.001), thus for shorter Down states dominated
by the “deterministic” period.

Figure 5. Activity modulation effect on network dynamics. A, Traces representing the local field potential (LFP) recording from one electrode in vivo at Deep, Mid, and Light anesthesia level
(adapted from Dasilva et al., 2021). B, Kernel density estimation (KDE) of Down durations versus t in vivo under Deep, Mid, and Light anesthesia levels. C, Boxplot of the average frequency of
the slow oscillations for each subject (N= 5) under Light, Mid, and Deep anesthesia (Friedman test p= 0.002, Wilcoxon signed-rank test: *p, 0.05). D, Linear correlation between t and
Down duration in vivo under Deep (RSS = 9e103), Mid (RSS = 1e103), and Light anesthesia (RSS = 114).
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Figure 6. In vitro activity modulation effect on network dynamics. A, Traces representing the local field potential (LFP) recording from one electrode in vitro under nega-
tive DC stimulation, control conditions and positive DC stimulation. B, Kernel density estimation (KDE) of Down durations versus t in vitro with negative DC, control con-
ditions and positive DC. C, Boxplot of the average frequency of slow oscillations for each slice (N = 6) under negative DC stimulation, control conditions and positive DC
stimulation (Friedman test p = 0.014, pp, 0.05). D, Linear correlation between Down duration and t in vitro under negative DC stimulation (RSS = 201), control condi-
tions (RSS = 19.9) and positive DC stimulation (RSS = 3.6). E, Traces representing the LFP recording from one electrode in vitro under control conditions and with bath
application of bicuculline (BMI) at two different concentrations: 0.6 and 1 mM. F, KDE of Down durations versus t in vitro under control conditions and with BMI at 0.6
and 1 mM. G, Boxplot of the average frequency of slow oscillations for each slice (N = 6) under control conditions and with BMI at 0.6 and 1 mM (Friedman test p = 0.014,
pp, 0.05). H, Linear correlation between Down duration and t in vitro under control conditions (RSS = 88.6), with BMI 0.6 mM (RSS = 1e103), and BMI 1 mM

(RSS = 721).
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A global picture of slow oscillations and Down state
metastability across states
In this final section, we integrate the concepts presented with
these results. Through the analysis of the cortical network dy-
namics using phase and synchronization of MUA and LFP, we
found that Down states are more than just silent periods in
between Up states. They have a structure that determines the
degree of their metastability and the features of the emergent os-
cillatory pattern. We have differentiated two dynamical phases in
Down states (Fig. 8A): a “deterministic” phase, with high syn-
chronization (KOP) and a time course determined by the expo-
nential growth of the phase (t ); and a “stochastic” phase, with
low synchronization (Figs. 1 and 2). In sum, Figure 8A repre-
sents the oscillatory cycle between Up and Down states that our
data and analysis support: the end of the Up state is highly syn-
chronous as commonly reported (Volgushev et al., 2006; Mochol
et al., 2015), the network goes into a silent, synchronized and
“deterministic” period, synchrony starts decreasing and enters a
“stochastic” stage of low synchronization. The system does not
always go through all these stages, and very short Down states are
commonly dominated by the “deterministic” stage, thus the inverse
relation between KOP and Down state duration (Fig. 4A–C), while
longer Down states spend more time in “stochastic”mode.

Throughout this study, we have used the linear regression of
the t versus Down state duration as a measure of how tightly the
duration of the Down states was driven by the time constant of
the phase and thus, by the synchronized or “deterministic” pe-
riod. In order to cover a wide parameter space of slow oscillatory
cycles, not only we have used three networks (in vivo, in vitro,
and in silico) but also explored experimental manipulations of
these cycles. In Figure 8B, we integrate all these results in the

same axes, namely the “deterministic” fraction of Down states
(“deterministic”/“deterministic1 stochastic”) against the regres-
sion values displayed along the figures, providing a final picture
that depicts the state-dependence of the metastability of Down
states and that connects the mechanisms with the network emer-
gent properties.

Discussion
The mechanisms underlying slow oscillations, or the alternation
between Up and Down states, have been a matter of debate since
the seminal work of Steriade et al. (1993) which characterized
this activity pattern. That a relatively simple spontaneous rhythm
is so difficult to fully understand is mainly because of self-feed-
back in recurrent networks and close-loop processes, which led
to a causality dilemma. In the case of Up and Down states, the
properties of the Up state (e.g., activity pattern, synchrony)
determine the subsequent Down state, and vice versa (Sanchez-
Vives et al., 2010). This being an emergent pattern from a com-
plex network, where all sort of elements from ionic currents to
excitation/inhibition or to synaptic properties have an impact on
the resulting rhythm, there has been space for various experi-
mental, computational, and clinical studies investigating this in-
triguing and prevalent oscillation (for reviews, see Neske, 2016;
Sanchez-Vives et al., 2017; Sanchez-Vives, 2020). In order to
clarify this picture, here we have focused on the less-studied
silent period, the Down state, and found that it has more struc-
ture than a simple “absence of activity.”

State-dependent changes of Down states
The synchronization analysis at the level of neuronal pools in
the LFP revealed the metastability of the cortical Down states

Figure 7. In silico activity modulation effect on network dynamics. A, Traces representing the local field potential (LFP) reconstructed from one network module in silico under decreased
excitability (negative DC stimulation), control conditions and increased excitability (positive DC stimulation). B, Kernel density estimation (KDE) of Down durations versus t in silico under
decreased excitability, control conditions and increased excitability. C, Boxplot of the average frequency of slow oscillations for each simulation (N= 5) under decreased excitability, control
conditions and increased excitability (Friedman test p = ns). D, Linear correlation between Down duration and t in silico under decreased excitability (RSS = 696), control conditions
(RSS = 2e103) and increased excitability (RSS = 50.6).
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emphasized by the existence of two complementary periods: (1)
a highly synchronized period following the Up-to-Down transi-
tion that we have called the “deterministic” and ubiquitous state,
with a time course that is defined by the exponential decay of the
phase, and (2) a desynchronized, not always present, period that
we have referred to as “stochastic.”

The identification of these periods and the possibility of infer-
ring local and global features of network dynamics through the
analytical approach used here, illustrates the value of the com-
bined recording and analysis of LFPs and spiking activity, which
offer insights that cannot be obtained at present by examining
spikes alone (Mazzoni et al., 2013).

Interestingly, we reported that different levels of anesthe-
sia resulted in significantly different time constants of syn-
chronization (Fig. 5B), which indeed were nonsignificant in
the different experimental conditions in vitro (Fig. 6B,F)
and in silico (Fig. 7B). In fact, in models, it is unusual to
modify the time constant assuming an invariant relaxation
dynamics, and rather regulating the amplitude. However, our
findings in vivo suggest that this concept should be revised, and
that different mechanisms may be recruited at different levels of
anesthesia. In Dasilva et al. (2021), a decreased cortical complexity
was reported for deep anesthesia (De Bonis et al., 2020). This
decrease is associated with the elongated permanence in the deter-
ministic state, which imposes a break in cortical interactions that
has also been described in humans for similarly evoked “off-periods”
(Rosanova et al., 2018), even if in that case healthy subjects under
anesthesia were not investigated.

A new proposal for an oscillatory cycle
These newly identified periods within Down states give rise
to a detailed Up and Down state cycle (Fig. 8A), closely con-
nected to the underlying cellular and network mechanisms,
revealing the possibility of inferring microscopic features
(i.e., time scales of potassium currents causing adaptation) in
network dynamics by studying macroscopic variables such
as collective synchronization. Our computational model
(Capone et al., 2019) has further proven this extreme, where

the adaptation time constant has been used to validate the t
of the population phase during the “deterministic” period (Fig.
4E). Further, the newly proposed stages of the oscillatory cycle
can be used to predict the responsiveness of the network in dif-
ferent time windows of the Down states, the period of refracto-
riness to the generation of a new Up state (Sanchez-Vives and
McCormick, 2000; Kroeger and Amzica, 2007), or the probabil-
ity of inducing a new Up state as a response to an input.

Moreover, this more detailed cycle conciliates existing models
of the mechanisms underlying Up and Down states. We propose
that there is an inescapable Down state that is the “deterministic”
period, which is dependent on the activity on the precedent Up
state (Compte et al., 2003; Hill and Tononi, 2005; Mattia and
Sanchez-Vives, 2012), probably because of the same mechanism
that terminated the Up state: slow hyperpolarizing potassium
currents of a different kind (calcium- and sodium-dependent
(Compte et al., 2003; Sanchez-Vives et al., 2010), ATP-dependent
K1 current (Cunningham et al., 2006), or GABAB receptor-
mediated (Mann et al., 2009) are compatible in time course and
properties). For example, intracellular recordings have demon-
strated that the enhancement of this afterhyperpolarization elon-
gates Down states, while the larger membrane conductance because
of channel opening contributes to the refractoriness (Sanchez-Vives
et al., 2010). Interestingly, with extracellular recordings, here we
have demonstrated that for larger afterhyperpolarizations, the
“deterministic” period can also be elongated (Fig. 6E,F,H).

Once this “deterministic” refractory period is terminated, the
network can trigger a new Up state if there is enough excitability
or inputs to the system. We have shown that this is the case
under experimental manipulations such as light anesthesia (Fig.
5A) or positive DC injection in vitro (Fig. 6A) or in silico (Fig.
7A). Under those conditions, the Down state is mostly formed
by the “deterministic” period, in association with the higher slow
oscillatory frequency. However, under control conditions, or
those with artificially decreased excitability (deep anesthesia, or
negative DC) the Down state is longer than the “deterministic”
period, and the system enters the “stochastic” period. Theoretical
models of Up and Down states have proposed the initiation of

Figure 8. The slow oscillatory cycle mechanisms and its effect on the dynamics of different cortical networks. A, Schematic representation of the periods composing an oscillatory cycle in relation to net-
work synchronization dynamics of multiunit activity (MUA) and local field potential (LFP) activity (upper panels). B, Representation of the state-dependent metastability in different cortical networks in the
space defined by the deterministic fraction of the Down states and the correlation between the duration of the entire Down states and the time constant of the “deterministic” period (t ).
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Up states by the stochastic summation of miniature synaptic
potentials (Bazhenov et al., 2002) or by spontaneous firing of
layer 5 neurons (Compte et al., 2003), which build up the activity
through recurrent connections eventually triggering a new Up
state. The new cycle that we propose here (Fig. 8A) can explain
the variety of slow oscillatory frequencies (and thus, of Down
state durations) that can be expressed by the system, either spon-
taneously or under experimental manipulations (Sancristóbal et
al., 2016; Barbero-Castillo et al., 2019, 2021; Dasilva et al., 2021;
Tort-Colet et al., 2021), some of which have been represented
with respect to the Down state periods in Figure 8B. Finally, we
remark that similar modulations in the statistical properties of
the slow oscillations, namely the mean and the coefficient of vari-
ation of the Down-Up cycles, display similar modulations in nat-
ural sleeping rodents (Levenstein et al., 2019), thus strongly
suggesting that the same mechanistic underpinnings are at work
in nonrapid eye movement (NREM) sleep as those we have high-
lighted here in anesthetized animals.

Down states versus “off-periods”
Down states are the periods of silence that, interspersed with Up
states or active periods, configure slow oscillations. The terms
Up and Down states can refer to the membrane potential, which
is Up, or depolarized, versus Down, or hyperpolarized (Sanchez-
Vives and McCormick, 2000; Beltramo et al., 2013; Sheroziya
and Timofeev, 2014), and are therefore terms related to intracel-
lular recordings. However, since slow oscillations are an emer-
gent network activity, Up and Down states can also refer to the
network being Up (for active) or Down (for silent), as detected
in LFP, MUA or even by electroencephalographic (EEG) record-
ings (Buzsáki et al., 2012). Indeed, the terms “active” versus
“silent states” have also been used as equivalent to Up and Down
states (Chauvette et al., 2012). The terminology used for the peri-
ods of slow oscillations has differed across schools, brain record-
ing techniques or fields of interest, and it is relevant to unify this
terminology or at least, clarify the different terms and concepts
being used. In the field of sleep (often using EEG recordings), the
term “off-periods” has been frequently used for the spontaneous
periods of silence during slow oscillations (Nir et al., 2011;
Vyazovskiy et al., 2011). Therefore, spontaneous “off-periods”
are equivalent to Down or silent states. Furthermore, the term
“off-period” has also been used for the silent period that follows
a response to cortical stimulation or perturbation. “Off-periods”
are not always evoked following cortical stimulation, since they are
contingent on the state of the network: if the network is in an
awake, asynchronous state, it is not going to express “off-periods,”
either spontaneous or following stimulation. Thus, “off-periods”
following stimulation are evoked not only in slow wave sleep
(Pigorini et al., 2015), but also in pathologic conditions such as
unresponsive wakefulness syndrome (Rosanova et al., 2018) and
even in perilesional regions (Russo et al., 2021). When “off-peri-
ods” are evoked following an excitatory stimulation, they break
the causal interactions across areas and decrease the complexity of
the cortical network, a clinical validated measure of consciousness
levels (Casarotto et al., 2016; Comolatti et al., 2019). What “off-
periods” are reflecting is a high synchrony of the network, where
neurons fire and go into silence synchronously, a state therefore
poor for information processing. We speculate that the metastabil-
ity of the cortical Down states that we have described in the cur-
rent study, is closely related to the phases observed in evoked “off-
periods,” with a “deterministic” stage associated with the peak of
hyperpolarization breaking causality (Rosanova et al., 2018) and
the “stochastic” one associated with the period of recovery of

network interactions and local excitability, highlighting the multi-
scale implications of Down state metastability (Capone et al., 2019;
Dasilva et al., 2021).
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