Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

TRPV1-Lineage Somatosensory Fibers Communicate with Taste Neurons in the Mouse Parabrachial Nucleus

Jinrong Li, Md Sams Sazzad Ali and Christian H. Lemon
Journal of Neuroscience 2 March 2022, 42 (9) 1719-1737; DOI: https://doi.org/10.1523/JNEUROSCI.0927-21.2021
Jinrong Li
1Department of Biology, University of Oklahoma, Norman, Oklahoma 73019
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jinrong Li
Md Sams Sazzad Ali
1Department of Biology, University of Oklahoma, Norman, Oklahoma 73019
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian H. Lemon
1Department of Biology, University of Oklahoma, Norman, Oklahoma 73019
2Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, Oklahoma 73019
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christian H. Lemon
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Trigeminal neurons convey somatosensory information from craniofacial tissues. In mouse brain, ascending projections from medullary trigeminal neurons arrive at taste neurons in the parabrachial (PB) nucleus, suggesting that taste neurons participate in somatosensory processing. However, the cell types that support this convergence were undefined. Using Cre-directed optogenetics and in vivo neurophysiology in anesthetized mice of both sexes, here we studied whether transient receptor potential vanilloid 1 (TRPV1)-lineage nociceptive and thermosensory fibers are primary neurons that drive trigeminal circuits reaching PB taste cells. We monitored spiking activity in individual PB neurons during photoexcitation of the terminals of TRPV1-lineage fibers arriving at the dorsal trigeminal nucleus caudalis, which relays orofacial somatosensory messages to the PB area. We also recorded PB neural responses to oral delivery of taste, chemesthetic, and thermal stimuli. We found that optical excitation of TRPV1-lineage fibers elicited responses in traditionally defined taste neurons in lateral PB nuclei. The tuning of neurons across diverse tastes associated with their sensitivity to TRPV1-lineage fiber stimulation, which only sparingly engaged neurons oriented to preferred tastes like sucrose. Moreover, neurons responsive to photostimulation of TRPV1-lineage afferents showed strong responses to temperature including noxious heat, which predominantly excited PB bitter taste cells. Multivariate and machine learning analyses revealed the PB confluence of TRPV1-lineage signals with taste captured sensory valence information shared across aversive gustatory, nociceptive, and thermal stimuli. Our results reveal that TRPV1-lineage fibers, which have defined roles in thermosensation and pain, communicate with PB taste neurons. This multisensory convergence supports dependencies between gustatory and somatosensory hedonic representations in the brain.

SIGNIFICANCE STATEMENT The parabrachial (PB) nucleus participates in autonomic and integrative neural processing for diverse sensory modalities. We recently found in mice that trigeminal neurons supplying craniofacial somatosensation project to PB neurons sensitive to tastes. Here, we show that trigeminal projections to PB gustatory cells are driven by a genetic class of thermosensory and nociceptive fiber. Input from these fibers was associated with PB neural sensitivity to aversive oral temperatures and tastes and supported a multimodal neural representation of sensory valence across gustatory, nociceptive, and thermal stimuli. These results reveal gustation and somatosensation to be only components of a larger PB code that captures sensory value. Defining this circuit has implications for understanding the neural representation of taste, temperature, and also pain-related phenomena.

  • nociception
  • parabrachial
  • taste
  • temperature
  • trigeminal
  • TRPV1

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 42 (9)
Journal of Neuroscience
Vol. 42, Issue 9
2 Mar 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
TRPV1-Lineage Somatosensory Fibers Communicate with Taste Neurons in the Mouse Parabrachial Nucleus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
TRPV1-Lineage Somatosensory Fibers Communicate with Taste Neurons in the Mouse Parabrachial Nucleus
Jinrong Li, Md Sams Sazzad Ali, Christian H. Lemon
Journal of Neuroscience 2 March 2022, 42 (9) 1719-1737; DOI: 10.1523/JNEUROSCI.0927-21.2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
TRPV1-Lineage Somatosensory Fibers Communicate with Taste Neurons in the Mouse Parabrachial Nucleus
Jinrong Li, Md Sams Sazzad Ali, Christian H. Lemon
Journal of Neuroscience 2 March 2022, 42 (9) 1719-1737; DOI: 10.1523/JNEUROSCI.0927-21.2021
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • nociception
  • parabrachial
  • taste
  • temperature
  • trigeminal
  • TRPV1

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Whole-Brain Wiring Diagram of Oxytocin System in Adult Mice
  • Microglial Tmem59 Deficiency Impairs Phagocytosis of Synapse and Leads to Autism-Like Behaviors in Mice
  • The Role of Visual Experience in Individual Differences of Brain Connectivity
Show more Research Articles

Systems/Circuits

  • Learned Motor Patterns Are Replayed in Human Motor Cortex during Sleep
  • Whole-Brain Wiring Diagram of Oxytocin System in Adult Mice
  • Cortical motion perception emerges from dimensionality reduction with evolved spike-timing dependent plasticity rules
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.