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In reinforcement learning (RL), animals choose by assigning values to options and learn by updating these values from
reward outcomes. This framework has been instrumental in identifying fundamental learning variables and their neuronal
implementations. However, canonical RL models do not explain how reward values are constructed from biologically critical
intrinsic reward components, such as nutrients. From an ecological perspective, animals should adapt their foraging choices
in dynamic environments to acquire nutrients that are essential for survival. Here, to advance the biological and ecological
validity of RL models, we investigated how (male) monkeys adapt their choices to obtain preferred nutrient rewards under
varying reward probabilities. We found that the nutrient composition of rewards strongly influenced learning and choices.
Preferences of the animals for specific nutrients (sugar, fat) affected how they adapted to changing reward probabilities; the
history of recent rewards influenced choices of the monkeys more strongly if these rewards contained the their preferred
nutrients (nutrient-specific reward history). The monkeys also chose preferred nutrients even when they were associated with
lower reward probability. A nutrient-sensitive RL model captured these processes; it updated the values of individual sugar
and fat components of expected rewards based on experience and integrated them into subjective values that explained the
choices of the monkeys. Nutrient-specific reward prediction errors guided this value-updating process. Our results identify
nutrients as important reward components that guide learning and choice by influencing the subjective value of choice
options. Extending RL models with nutrient-value functions may enhance their biological validity and uncover nutrient-spe-
cific learning and decision variables.
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Significance Statement

RL is an influential framework that formalizes how animals learn from experienced rewards. Although reward is a founda-
tional concept in RL theory, canonical RL models cannot explain how learning depends on specific reward properties, such as
nutrients. Intuitively, learning should be sensitive to the nutrient components of the reward to benefit health and survival.
Here, we show that the nutrient (fat, sugar) composition of rewards affects how the monkeys choose and learn in an RL paradigm
and that key learning variables including reward history and reward prediction error should be modified with nutrient-specific
components to account for the choice behavior observed in the monkeys. By incorporating biologically critical nutrient rewards
into the RL framework, our findings help advance the ecological validity of RL models.

Introduction
According to reinforcement learning (RL) theory, animals
choose by assigning values to options and learn by updating
these values from experienced rewards (Sutton and Barto, 1998).
This framework has been instrumental in identifying learning

and decision variables that explain animal behavior, including
object values and action values, which guide choices, and reward
prediction errors, which update values from experienced out-
comes. Physical implementations of these concepts have been
discovered in neurons of the primate dopamine system, striatum,
amygdala, and frontal cortex (Schultz et al., 1997; Samejima et
al., 2005; Lau and Glimcher, 2008; So and Stuphorn, 2010; Lee et
al., 2012; Seo et al., 2012; Tsutsui et al., 2016; Costa et al., 2019;
Grabenhorst et al., 2019a). One important factor that limits the
biological validity of canonical RL models is that they do not
explain how learning and choice depend on the composition of
experienced rewards. Nutrients, for example, are biologically
critical intrinsic components of food rewards that engage
dedicated sensory and physiological mechanisms and are
essential for survival (Carreiro et al., 2016; Rolls, 2020;
Simpson and Raubenheimer, 2020). Thus, investigating how
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nutrients influence learning and choice could enhance the
biological validity of the RL framework.

From an ecological perspective, the ability of an animal to adapt
its food choices to changing nutrient availabilities determines its
survival and long-term health (Simpson and Raubenheimer, 2012).
Indeed, foraging monkeys adapt their feeding patterns to uncer-
tainty imposed by regional and seasonal food variations (Cui et al.,
2018, 2020), for example, adjusting their diet based on the availabil-
ity of nutritious foods (seeds, nuts). Primates, including humans,
also exhibit subjective preferences for specific nutrients and related
sensory food qualities (van der Klaauw et al., 2016; Ma et al., 2017;
Takahashi et al., 2019; Huang et al., 2021). Thus, foraging animals
consider both food nutrient composition and the probability of
obtaining the food. However, the mechanisms underlying such
adaptive, nutrient-sensitive food choices remain poorly understood.

Recent proposals in RL theory extended the reward con-
cept to outcomes under homeostatic regulation (Keramati
and Gutkin, 2014) and distinguished hedonic reward compo-
nents from their postingestive consequences (Dayan, 2022).
Generally, the importance of linking biological reward com-
ponents to learning and choice theories is increasingly re-
cognized (Rangel, 2013; Suzuki et al., 2017; Averbeck and
Murray, 2020; de Araujo et al., 2020; Stuphorn, 2021). Yet,
the field lacks experimental data on how nutrient-reward com-
ponents influence choices of animals in formal RL paradigms.

We recently showed that monkeys in economic choice tasks
exhibit individual preferences for specific nutrients and related
sensory food qualities (e.g., oral texture; Huang et al., 2021).
Preferences of monkeys were well described by subjective nutri-
ent-value functions that linked reward nutrient composition to
choices. In simulations, we showed that incorporating nutrient-
value functions into canonical RL models optimized model per-
formance when preferences prioritized specific nutrients (Huang
et al., 2021). Here, we extended this approach to examine the
behavior of rhesus monkeys (Macaca mulatta) in a dynamic for-
aging task involving choices between rewards with different nutri-
ent (fat, sugar) components under varying reward probabilities.
Our task captured features of food choice in ecological foraging
contexts (Cui et al., 2018, 2020); the animals could adapt their
choices to changing reward availabilities to obtain preferred
nutrients or choose less-preferred but more available alternatives.

Previous studies showed that macaques track changing reward
probabilities based on the history of recent choices and rewards
(Corrado et al., 2005; Lau and Glimcher, 2005; Kennerley et al.,
2006; Lee et al., 2012; Grabenhorst et al., 2019b). The influence of
reward history on choice is typically modeled by linking subjec-
tively weighted recent rewards to current choices using logistic
regression (Lau and Glimcher, 2005) and by dynamically updating
expected values from experienced rewards using RL models
(Sutton and Barto, 1998). We followed these approaches
and examined whether, in a dynamic learning task, mon-
keys assigned higher value to recent rewards based on the
nutrient components of the rewards and whether nutrient-
sensitive RL models could account for this process.

Materials and Methods
Animals
Two adult male rhesus macaques (Macaca mulatta) were trained in
the study, monkey Ya (weight during the experiments, 17–19 kg; age,
6 years) and monkey Ym (12–13 kg; age, 6 years). The animals were
trained and tested ;1–2 h per day, 5 d per week for 6months, inter-
rupted by regular week-long testing breaks. Both monkeys participated
in a related nutrient-choice study using the same dairy-based nutrient

rewards as in this study (Huang et al., 2021). Thus, the different sensitiv-
ities of learning from the received nutrients in the probabilistic learning
task can be linked to the nutrient preferences of the same monkeys in
economic choice tasks without learning. The animals were on a standard
diet for laboratory macaques, composed of high-protein dry pellets (per-
centage of calories provided by protein, 30.36%; fat, 13.29%; carbohy-
drates, 56.34%), dried fruits, seeds, nuts, and fresh fruits and vegetables.
We monitored the health condition and body weight of the monkeys to
ensure their welfare after introducing high-calorie rewards. No effects of
these rewards on the health of the animals were observed. Each testing
day, the animals had ad libitum access to the standard diet before and af-
ter the experiments and received their main liquid intake in the labora-
tory. The body weight of the animals increased as expected for growing
animals.

All animal procedures conformed to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. The
experiments have been regulated, ethically reviewed, and super-
vised by the following United Kingdom (UK) and University of
Cambridge (UCam) institutions and individuals: UK Home Office,
implementing the Animals (Scientific Procedures) Act 1986, Amendment
Regulations 2012, and represented by the local UK Home Office
Inspector; UK Animals in Science Committee; UCam Animal Welfare
and Ethical Review Body; UK National Center for Replacement,
Refinement, and Reduction of Animal Experiments; UCam Biomedical
Service Certificate Holder; UCam Welfare Officer; UCam Governance
and Strategy Committee; UCam Named Veterinary Surgeon; and UCam
Named Animal Care andWelfare Officer.

Experimental Design
Nutrient rewards
We prepared nutrient-controlled liquids with 2 � 2 fat and sugar levels
to examine whether fat and sugar biased learning from reward outcomes
[Fig. 1A,B; low-fat low-sugar (LFLS); high-fat low-sugar (HFLS); low-fat
high-sugar (LFHS); high-fat high-sugar (HFHS)]. The liquids were
matched in flavor (peach or blackcurrant, varied in different sessions),
temperature, protein, salt, and other ingredients (Table 1). We used
commercial skimmed milk and whole milk (British skimmed milk and
whole milk, Sainsbury’s Supermarkets) as baseline low-fat and high-fat
liquids and flavored the liquids with fruit juice to increase palatability.
The energy content of the liquid rewards (Table 1) was estimated based
on metabolizable energy using Atwater general energy conversion fac-
tors (protein, 4.0 kcal/g; fat, 9.0 kcal/g; carbohydrate, 4.0 kcal/g), follow-
ing the definition of foraging efficiency in optimal foraging theory
(McNamara and Houston, 1997).

Nutrient foraging task
The four nutrient reward types were associated with four untrained
visual cues in each session. When a trial started, the monkeys were
first presented with two of the four visual cues shown on a horizon-
tally mounted touch monitor. They then made a choice between the
two cues by touching one of two blue rectangle target stimuli shown
below the cues. Following the choice, they received either a large
amount (rewarded trials, 0.5 ml) or a small amount (nonrewarded tri-
als, 0.3 ml) of the cue-associated liquid depending on its prespecified
reward probability (P; see Fig. 1A). When the session started, two of
the rewards (LFLS/HFHS or LFHS/HFLS) were offered in high reward
probabilities (P ¼ 0:8), and the other two rewards in low reward probabil-
ities (P ¼ 0:2; see Fig. 1C, block A or block B). The reward probabilities
were reversed every 100 trials (P ¼ 0:2!0:8; P ¼ 0:8!0:2; see Fig. 1C,D).

Data Analysis
All data were analyzed using MATLAB 2017 software (MathWorks).

Learning curves
Learning curves were plotted by aligning reward-specific choices to the
probability reversal trials. In particular, based on the probability before
and after reversals, we grouped these curves into incremental (P =
0.2!P = 0.8) and decremental (P = 0.8!P = 0.2, not shown) learning
curves and plotted the incremental curves in Figure 2A. Two-sample
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t tests were performed to compare choice probabilities averaged across
the last 10 plotted trials after learning for each reward (trial 70 to trial 80
after reversals).

Learning latency
The learning latency was defined as the number of trials between the first
behavioral change point after probability reversals (see Fig. 2B). The be-
havioral change points were identified as the significant change points of
cumulative choice slopes (Gallistel et al., 2004), based on a two-sample
t test with the criterion p, 0.05.

Averaged choice probability
We compared the averaged choice probability for each reward to indi-
cate the reward preference (see Fig. 2C). To cancel out the influence of
reward probability on choices, we truncated the final trials in unbalanced
sessions and computed the averaged choice probability across the same
total number of high-probability and low-probability blocks for each
reward.

Logistic regression analysis
History model
We used multiple logistic regression (fitglm function, MATLAB) to
model choices based on recent choices and reward outcomes as follows
(see Fig. 3A,B):

logitðPLÞ ¼ b0 1 b1

� LeftFirst1
Xn

k¼1

b k11 � Cxkð Þ 1
Xn

k¼1

b k1n11 � Rxkð Þ;

where the probability of choosing the left option (PL) was modeled by
differential choice history (Cxn) and reward history (Rxn) up to recent n
trials while controlling the presentation sequence (LeftFirst = 1, if the left
option was shown first; 0, if the right option was shown first). Similarly,
the choice history regressors Cxn and reward history regressors Rxn were
defined as the differences between the history variables of the left and
right options as follows:

Cxn ¼ cLn � cRn ; c
i
n ¼

1;
0;

if option i was chosen n trials earlier
if option i was not chosen n trials earlier

�

Rxn ¼ rLn � rRn ; r
i
n ¼

1;
0;

if option i was chosen and rewarded n trials earlier
otherwise

;

�

i 2 L;Rf g:

Notably, the history regressors for each option were indexed only
when the same option was offered by assuming the unoffered options in

a past trial did not influence current choices (Wittmann et al., 2020).
Therefore, because of the random sampling of offered options, the
n-back trials for the left option may not be the same trials as those for
the right option.

Nutrient model
Based on the History model, we further included nutrient history inter-
action terms in the regression model to characterize the individual con-
tribution of fat and sugar content on the effects of recent choices and
reward outcomes (see Fig. 3C–G) as follows:

logit PLð Þ ¼ b 01b 1 � LeftFirst

1

Xn

k¼1

b k11 � Cxkð Þ1
Xn

k¼1

bk1n11 � Rxkð Þ

1

Xn

k¼1

b k12n11 � FCkð Þ1
Xn

k¼1

bk13n11 � FRkð Þ

1

Xn

k¼1

b k14n11 � SCkð Þ1
Xn

k¼1

bk15n11 � SRkð Þ;

where FCn denoted recent high-fat choices, and FRn denoted high-fat
rewarded trials; SCn denoted recent high-sugar choices, and SRn denoted
high-sugar rewarded trials. The nutrient history interaction terms were
defined as follows:

FCn ¼ cLt�n � FatLvLt�n � cRt�n � FatLvRt�n

SCn ¼ cLt�n � SugarLvLt�n � cRt�n � SugarLvRt�n

FRn ¼ rLt�n � FatLvLt�n � rRt�n � FatLvRt�n

SRn ¼ rLt�n � SugarLvLt�n � rRt�n � SugarLvRt�n;

where cLt�n and c
R
t�n indicated whether the left or right option was chosen

n trials earlier (1, chosen; 0, unchosen); rLt�n and rRt�n denoted whether
the left or right option was chosen and was rewarded (1, chosen and
rewarded; 0, otherwise); the fat level (FatLv) and sugar level (SugarLv)
of the options were defined as 1 (left . right), 0 (left = right), or �1
(left , right). Model comparison was performed based on the Akaike
Information Criterion (AIC) between the History model and the
Nutrient model; these models were matched in history lengths up to 10
trials in the past (see Fig. 3E).

RL models
Standard RL model (Q-learning with binary reward outcomes)
We adopted a standard Q-learning algorithm that followed the Rescorla–
Wagner learning rule with binary reward outcomes (Rescorla and Wagner,
1972; Sutton and Barto, 1998). The initial reward values (Qi

t) were set to be
0 for all options (Qi

1 ¼ 0; 8i 2 LFLS;HFLS; LFHS;HFHSf g) and were

Table 1. Nutrient content of the liquid food rewards

Nutrient rewards

Peach flavor Blackcurrant flavor

WaterLFLS HFLS LFHS HFHS LFLS HFLS LFHS HFHS

Recipe Peach juice (ml) 30 30 30 30 0 0 0 0 NA
Blackcurrant juice (ml) 0 0 0 0 30 30 30 30
Skimmed milk (ml) 270 0 270 0 270 0 270 0
Whole milk (ml) 0 270 0 270 0 270 0 270
Caster sugar (g) 0 0.81a 20.4 21.21 0 0.81 20.4 21.21
Total (ml) 300 300 300 300 300 300 300 300

Nutrient content
(per 100 ml)

Calorie (kcal) 33.5 60.7 60.7 87.9 43.9 71.1 71.1 98.3 0
Fat (g) 0.45 3.33 0.45 3.33 0.45 3.33 0.45 3.33 0
Sugar (g) 4.50 4.50 11.30 11.30 6.80 6.80 13.60 13.60 0
Protein (g) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 0
Salt (g) 0.11 0.10 0.11 0.10 0.14 0.13 0.14 0.13 0
Sugar/fat (kcal/kcal) 4.444 0.601 11.161 1.508 6.716 0.908 13.432 1.815 NA

aWe added 0.81 g of caster sugar for the HFLS reward to compensate for the slightly lower sugar content in commercial whole milk compared with the skimmed milk. NA, not applicable.
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updated by the reward prediction errors (RPEt) scaled by the learning rate
a 2 0; 1½ � as follows:

RPEt ¼ Ri
t � Qi

t�1

� �
;Ri

t ¼
1; if rewarded
0; if otherwise

; i 2 LFLS;HFLS; LFHS;HFHSf g
�

Qi
t ¼ Qi

t�1 1a � RPEt:

Choices were predicted by first transforming the left-right value dif-
ference d t via the softmax function into choice probability pL

t as
follows:

p L dð Þt ¼
1

11 exp �b � d t � b 0ð Þ 2 0; 1½ �; d t ¼ QL
t � QR

t ;

where QL
t and QR

t were the expected values for the left and right option
on trial t, b was the inverse temperature indicating the sensitivity of
choice to value differences, and b0 was the side bias independent of left-
right action values. The three free parameters, learning rate (a), inverse
temperature (b ), and side-bias intercept (b 0) were fitted based on maxi-
mum likelihood estimation (fminsearch function, MATLAB) using the
likelihood function L uð Þ below (ILt ¼ 1; IRt ¼ 0 for left choices;
ILt ¼ 0; IRt ¼ 1 for right choices) as follows:

L uð Þ ¼
Y
t2T

lt uð Þ ¼
Y
t2T

exp b � QL
t

� �� ILt 1exp b � QR
t � b0

� �� IRt
exp b � QL

tð Þ1exp b � QR
t � b0ð Þ

" #
;

u ¼ a; b ; b0f g

û ¼ argmax
u

L uð Þ:

Alternative RL models
We systematically included differential learning rates and nutri-
ent-specific learning parameters in the RL models. Specifically, we
examined nine combinatorial RL models with three model com-
plexities (Basic, Asym, and Forget) and three nutrient-specific
learning parameters (Binary, NutVal, NutValAlpha) as described
below.

RL model complexity (Basic, Asym, Forget models).We included dif-
ferential learning rates for rewarded (a1), unrewarded (a�), and unof-
fered (a0) options to update the reward values as follows:

Qi t11ð Þ ¼ Qi tð Þ1a � Ri tð Þ � Qi tð Þ½ �;

a ¼
a1;
a�;
a0;

if rewarded
if unrewarded
if unoffered:

2 0; 1½ �
8<
:

In the Basic models, the agent equally updated both the rewarded
and unrewarded options and kept perfect memory for the unoffered
option (a1 ¼ a�;a0 ¼ 0). In the Asym model, the agent updated the
rewarded and unrewarded with different learning rates, while keeping
perfect memory for the unoffered rewards (a1 6¼ a�;a0 ¼ 0). In the
Forget model, the value of the unoffered rewards decayed because of
value forgetting, but the rewarded and unrewarded options were
updated equally (a1 ¼ a�;a0 . 0).

Nutrient-specific learning parameters (Binary, NutVal, NutValAlpha).
We examined nutrient preferences by including either nutrient-
specific values only (NutVal models) or additional nutrient-spe-
cific learning rates (NutValAlpha models). In the NutVal models
(see Fig. 4B), the reward values depend on the reward types as
follows:

Qi t11ð Þ ¼ Qi tð Þ1a � Vi tð Þ � R tð Þ � Qi tð Þ½ �

Vi tð Þ ¼ VIF tð Þ
F � VIS tð Þ

S � VIF tð Þ�IS tð Þ
FS

VF � VS � VFS
;

R tð Þ ¼ 1; if rewarded
d; if not rewarded

d 2 0; 1½ �
�

IFðtÞ ¼ 1; i tð Þ ¼ HFLS;HFHS
0; i tð Þ ¼ LFLS; LFHS

; ISðtÞ ¼ 1; i tð Þ ¼ LFHS;HFHS
0; i tð Þ ¼ LFLS;HFLS

;

��

where VF , VS, and VFS are fixed animal-specific values for fat, sugar,
and their combinations, respectively, in addition to the low-nutrient
baseline ingredients. Therefore, the experienced reward values Vi tð Þ
were computed based on subjective preferences for the fat level (IF) and
sugar levels (IS) of the received reward. For computational simplicity, we
constrained all reward values between 0 and 1 by normalizing them to
the value of HFHS VF � VS � VFSð Þ. When the animals received a small
reward (nonrewarded trials), the reward values were discounted by a
constant d 2 0; 1½ �, which scales the experienced reward values accord-
ing to the large or small reward amounts. Thus, the model included free
parameters for subjective values of fat, sugar, fat–sugar interaction, and
for discounting of low reward amounts.

In the NutValAlpha models (see Fig. 4C), higher learning rates are
used to update the values for high-nutrient rewards as follows:

log
a tð Þ

1� a tð Þ
� �

¼ a0 1aF � IF tð Þ1aS � IS tð Þ1aFS � IF tð Þ � IS tð Þ½ � 2 R;

a tð Þ 2 0; 1½ �; 8t 2 N;

where a tð Þ denotes the learning rate to update the value of the
rewarded option on trial t, which was first transformed from 0; 1½ � to the
real domain and modified by the high-fat level (aF), the high-sugar level
(aS), or their combination (aFS), depending on the fat levels (IF) and
sugar levels (IS). The logistic transformation ensured that the learning
rates were always between 0 and 1.

Under these specifications, the Standard RL model is, therefore,
equivalent to the Basic Binary model, and the best-fitting model in the
main text refers to the NutVal-Forget model (Fig. 4).

Energy RL model
In the Energy model (see Fig. 4G), the reward values were determined
solely by their energy content as follows:

Qi t 1 1ð Þ ¼ Qi tð Þ1a � Vi tð Þ � R tð Þ � Qi tð Þ½ �

Vi tð Þ ¼

1
VE

0:5

1

; i ¼ LFLS

; i ¼ HFLS; LFHS

; i ¼ HFHS

;

8>>>><
>>>>:

R tð Þ ¼ 1 ; if rewarded
d ; if not rewarded

d 2 0; 1½ �;
�

where VE denotes the subjective values for the high energy content of
HFHS reward. Values for rewards with the middle energy levels, LFLS
and HFLS, were both 1

2VE, and all values were normalized to VE between
0 and 1.

Object value RL model
In the Object value (ObjVal) model (see Fig. 4G), the animals learn from
stimulus-specific values that are free parameters fixed in each session.
The value function, with all values normalized to VHFHS to be con-
strained between 0 and 1, is as follows:
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Vi tð Þ ¼
VLFLS=VHFHS; i tð Þ ¼ LFLS
VHFLS=VHFHS; i tð Þ ¼ HFLS
VLFHS=VHFHS; i tð Þ ¼ LFHS

1; i tð Þ ¼ HFHS:

8>><
>>:

Other specifications are similar to the NutVal models, including the
learning rate, value-forgetting rate, and the discount factor.

Nutrient prediction error-RL model
In the nutrient prediction error-RL (NutRPE) model (see Fig. 7), we
decomposed the nutrient-specific values Qi tð Þ into components of fat
value QF

i tð Þ and sugar value QS
i tð Þ as follows:

Qi tð Þ ¼ QF
i tð Þ � QS

i tð Þ 2 0; 1½ �; 8t 2 N:

Importantly, these value components were updated by nutrient pre-
diction errors (NPEs) that were computed as the discrepancies between
the experienced nutrient values and the trial-by-trial expected nutrient
values as follows:

NPEF
i tð Þ ¼ VF

i tð Þ � R tð Þ � QF
i tð Þ;VF

i tð Þ ¼
1
vF
1

; i tð Þ ¼ LFLS; LFHS
; i tð Þ ¼ HFLS;HFHS

8<
:

NPES
i tð Þ ¼ VS

i tð Þ � R tð Þ � QS
i tð Þ;VS

i tð Þ ¼
1
vS
1

; i tð Þ ¼ LFLS;HFLS
; i tð Þ ¼ LFHS;HFHS

8<
:

R tð Þ ¼ 1 ; if rewarded
d ; if not rewarded

d 2 0; 1½ �;
�

where NPEFi and NPESi denoted the fat and sugar prediction errors
for the chosen reward on trial t, i tð Þ; VF

i and VS
i were the fixed, animal-

specific values for fat and sugar, and QF
i and QS

i were the current
expected values of fat and sugar components for reward i, respectively.
The nutrient values were separately updated by corresponding nutrient
prediction errors as follows:

QF
i t11ð Þ ¼ QF

i tð Þ1a � NPEF
i tð Þ

QS
i t11ð Þ ¼ QS

i tð Þ1a � NPES
i tð Þ;

where QF
i t11ð Þ and QS

i t11ð Þ are the values for fat and sugar compo-
nents updated from the previous fat and sugar value estimates, QF

i tð Þ
and QS

i tð Þ, and the NPEs for fat and sugar multiplied by the learning rate
a 2 0; 1½ �.

Notably, although no the fat–sugar interaction term was included
when fat values and sugar values were integrated into aggregated
reward values, the multiplication of fat and sugar values inherently
introduced supra-additivity when fat and sugar were both present.
Specifically, a fixed increase in fat value from higher fat content
would give rise to a greater influence on the aggregated reward value
when the sugar level is higher, and vice versa. Therefore, we used this
specification to test whether the monkeys were sensitive to individual
fat and sugar content and possible fat–sugar interactions, similar to
our nutrient-sensitive logistic regression models and the RL models
described above.

Model comparison
We performed model comparisons based on the AIC, which evaluated
model prediction while penalizing excessive free parameters and com-
puted the relative model likelihood of model i, Pi (Burnham et al., 2011)
as follows:

Pi ¼ exp
AICmin � AICi

2

	 

:

The session-averaged AIC values were compared with our best-fit-
ting model (NutVal-Forget model), and the AIC differences indicated
the results of the model comparison. Figure 4F shows the overview of
model comparisons across all RL models, with the gray box indicating
the statistical threshold compared with the best-fitting NutVal-Forget
model. The NutVal-Forget model was directly compared with the
Energy model and ObjVal model (see Fig. 4G inset), and with the
NutRPE model (see Fig. 7C, inset) based on AIC differences across
sessions.

Additionally, we report the number of best-fitting sessions for each
model. In each session, we first selected best-fitting models from the nine
RL models and calculated the number of best-fitting sessions for each
model. We allowed multiple best-fitting models in each session when they
were statistically indistinguishable (relative model likelihood. 0.05).

Model validation
Model-independent results
In Figure 4E, we simulated choices using the best-fitting NutVal-Forget
model and computed the conditional choice probabilities depending on
the reward and choice history of the previous trial, as we did for actual
choice data in Figure 2E.

Model recovery analysis
To evaluate how well our model comparison could distinguish between
our candidate models, we performed a model recovery analysis (see Fig.
5) to compare the best-fitting models with the actual models used to
generate simulated choices in our task (Wilson and Collins, 2019).
Specifically, for nine RL models, we simulated choices in the actual
trial conditions (N = 23 sessions from two monkeys) and performed
our AIC-based model comparison to select the best-fitting model for
each simulated session (23 sessions� 9 models = 207 simulated sessions).
We used the actual trial conditions and the fitted parameters in the 23 ses-
sions from both monkeys to approximate conditions in our model com-
parison. Next, we computed the conditional probabilities of identifying
the correct models given the simulated model (see Fig. 5A, confusion ma-
trix) or the fit model (see Fig. 5B, inversion matrix). The confusion matrix
quantifies how sensitive this approach is to recover the underlying
model, p(fit model|simulated model); the inversion matrix indicates
how reliable a best-fitting model truly identifies the underlying model,
p(simulated model|it model), rather than misclassification from other
candidate models.

Parameter recovery analysis
To evaluate the reliability of the parameter estimates from the model fit-
ting, we examined how well the fitted parameters of each model were
correlated with the true simulated parameters, using the same simulation
data as in the model recovery analysis (see Fig. 6A–H). We also reported
the cross-correlation between the eight free parameters in the NutVal-
Forget model because correlations between parameters might influence
the reliability of parameter estimates in the model fitting (see Fig. 6I).

Data and materials availability
All data are available on reasonable request from the corresponding
author.

Results
Experimental design
Two monkeys performed in a dynamic foraging task to obtain
probabilistic liquid rewards with defined nutrient compositions
(Fig. 1A). In each trial, the monkey viewed two visual cues,
randomly drawn from a set of four cues, that were first pre-
sented sequentially before reappearing in a randomized left-
right arrangement as choice options. The monkey was then
required to choose between the two cues by touching a cue-
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associated target on the touch monitor. Following the touch
choice, the animal received either a large amount of liquid
reward (rewarded trials) or a small amount (nonrewarded tri-
als) depending on a prespecified reward probability (P). The
visual cues were each associated with one of four different liquid
rewards. Cue-reward associations were fixed within each session
and we used new, untrained visual cues in each session to avoid
influences of prior experience. We designed four liquid rewards
that differed only in fat and sugar levels (Fig. 1B; LFLS, HFLS,
LFHS, HFHS) while controlling the flavor (blackcurrant or peach)
and other ingredients (protein, salt, etc.; Table 1). The LFLS liquid
was lowest in energy content; the HFLS and LFHS liquids had
matched, intermediate energy content; and the HFHS liquid was
highest in energy. This reward set was the same as the one used in
our previous study in an economic choice task (Huang et al., 2021).

At the start of each session, two rewards (LFLS/HFHS or
LFHS/HFLS) were associated with a high probability of obtain-
ing a large reward (P ¼ 0:8), and the other two rewards were
associated with a low reward probability (P ¼ 0:2; Fig. 1C, block
A or block B). We reversed the reward probabilities every 100 tri-
als throughout the session (P ¼ 0:2 ! 0:8; P ¼ 0:8 ! 0:2) to
encourage learning and value updating from reward outcomes.
Notably, this design maintained constant availability of fat and
sugar regardless of block type as there were always two high-prob-
ability and two low-probability options for both high-fat and
high-sugar rewards. The design also held the available energy con-
tent constant across blocks. The liquids were matched in flavor
(blackcurrant or peach) and other ingredients (protein, salt, etc.;
Table 1); thus, differential learning and choice patterns could only
be attributed to the nutrient content of the rewards.

In the following sections, we first identify the typical learning
and choice patterns of each monkey in representative sessions
and aggregated data across sessions. We then model these data
using logistic regression based on reward history and compare

the performance of different RL models in accounting for the
choices of the monkeys.

Nutrients bias learning and choice for probabilistic rewards:
example sessions
The behavior in two example sessions (Fig. 1D) showed that
both monkeys exhibited preferences for specific nutrients while
tracking the changing reward probabilities. The choices of mon-
key Ya (Fig. 1D, left) were dominated by a general preference for
high-sugar rewards, with a smaller impact of reward probability
on choice. Specifically, monkey Ya chose the high-sugar rewards
(LFHS, HFHS) frequently, even when they were associated with
a lower probability of obtaining a large reward amount com-
pared with the high-fat reward (Fig. 1D, blue and green curves;
compare the energy-matched LFHS and HFLS rewards). In addi-
tion, choice frequencies tracked the changing reward probabil-
ities, particularly for the high-sugar rewards (compare red and
blue curves across trial blocks). In addition, the choices of mon-
key Ya tracked the changing reward probabilities, particularly for
the high-sugar rewards (Fig. 1D, left; compare red and blue
curves across trial blocks). By contrast, the choices of monkey
Ym (Fig. 1D, right) reflected both a preference for nutrient con-
tent and a strong dependence on reward probability. Although
monkey Ym also preferred high-nutrient rewards over low-nu-
trient rewards with matched reward probabilities (Fig. 1D, right;
compare red and yellow curves in 200–300 trials, blue and green
curves in 100–200 trials), he chose the low-nutrient reward more
frequently when it was associated with a high reward probability
(yellow curve, e.g., 100–200 trials), indicating a noticeable but
weaker preference for fat and sugar than monkey Ya (compare
blue and green curves, e.g., 300–400 trials).

Two main results emerged from these single-session data.
First, the choices of the monkeys were sensitive to the nutrient
content of the rewards; both monkeys preferred sugar over fat

Figure 1. Dynamic foraging task with nutrient-defined rewards. A, Task structure. In each trial, the monkeys were first sequentially presented with two visual cues randomly drawn from a
set of four cues and then made a left or right touch choice between these two cues when they were simultaneously presented. Following the touch choice, the animals received a large amount
(0.5 ml) or a small amount (0.3 ml) of the associated liquid reward depending on a prespecified reward probability (P). B, Reward design. Four types of liquids with 2 � 2 factorial fat and
sugar levels were offered in each session, LFLS (yellow), HFLS (green), LFHS (blue), and HFHS (red). The LFHS and HFLS liquids were isocaloric, and all rewards were matched in flavor (blackcur-
rant or peach) and other ingredients (e.g., protein, salt, etc.; Table 1). C, Reward-probability schedule. The probabilities of receiving large rewards (reward probability) were assigned in two
block types. In block A, LFHS and HFLS were associated with a high probability (P ¼ 0:8); LFLS and HFHS were associated with a low reward probability (P ¼ 0:2). All reward probabilities
were reversed in block B. Each session started with either block A or block B, and the reward probabilities changed between the two block types every 100 trials with typically three to five
alternations in each session. D, Choices and reward outcomes in single sessions for monkey Ya (left) and monkey Ym (right). Tick marks represent choices for specific rewards; long marks indi-
cate large-reward outcomes (rewarded trials), and short marks indicate small-reward outcomes (nonrewarded trials). Reward types in dark-gray blocks were associated with high reward proba-
bility (P ¼ 0:8) and light-gray blocks were associated with low reward probability (P ¼ 0:2). Choice-probability curves show nine trial running averages of choices for each reward (N =
trials).
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content, although this preference was more pronounced in mon-
key Ya. Second, although both monkeys tracked changing reward
probabilities, they differed in the way in which they integrated
reward probabilities with nutrient preferences to make choices,
with monkey Ym showing a more balanced integration of reward
probability and nutrient content. These results could not be
explained by canonical RL models that would only consider binary
reward outcomes without also considering how different reward
components that are common to different rewards (i.e., fat and
sugar) may affect learning and choice.

Nutrients bias learning and choice for probabilistic rewards:
aggregated data
The choice patterns observed in single sessions were also found
in aggregated data across sessions. Both monkeys successfully
tracked changing reward probabilities by choosing an option
more frequently when its reward probability switched from low
(P ¼ 0:2) to high (P ¼ 0:8), as evident by averaged choice prob-
abilities around reward-probability reversal points (Fig. 2A).
Notably, higher reward probability increased the choices of mon-
key Ya only for the high-sugar stimuli but not for the low-sugar
stimuli, which suggested that learning depended on the nutrient
composition of the reward. By contrast, in monkey Ym, an increase
in reward probability led to an increase in choices for all stimuli.

We did not find strong evidence that the monkeys adjusted their
choices more quickly to changed reward probabilities for the high-
sugar and high-fat rewards, indicated by learning latencies (number
of trials after probability reversals before significant changes in
choice behavior; Fig. 2B). Overall, the monkeys responded differ-
ently to probability changes for rewards that differed in fat and
sugar content.

When choices stabilized after probability reversals, monkey
Ya showed a strong preference for high-sugar rewards, in par-
ticular the combination of high-sugar and high-fat content,
whereas monkey Ym showed graded preferences for high-
sugar over high-fat rewards, followed by the low-nutrient
option (Fig. 2A; 60–80 trials postreversals). These preferences
were evident in averaged choice probabilities for the four
reward types across truncated sessions with balanced trial
types (Fig. 2C; see above, Materials and Methods). The choice
patterns reflecting nutrient preferences and adaptations to
current reward probabilities typically emerged quickly within
the first 30 trials of each session when novel visual cues were
introduced (Fig. 2D). Importantly, both monkeys preferred
the high-sugar (LFHS) reward over the energy-matched high-
fat (HFLS) reward. This result is important because it shows
that the monkeys preferred specific nutrients, rather than
being indifferent between nutrients of the same energy content,
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Figure 2. Nutrient-specific learning and choice patterns across sessions. A, Learning curves. Mean choice frequencies (nine trial running averages6 SEM) aligned to reward probability rever-
sals (dashed line, P ¼ 0:2 ! 0:8) indicate how choices responded to changes in reward probabilities depending on reward nutrient content. N, Number of low to high reward probability
reversals. Two-sample t test on the choice probability averaged across the 70th and 80th trials after reversals. B, Learning latency was defined as trial intervals between probability reversals and
the first significant change of choice patterns (see Materials and Methods). We included only the first probability reversal across sessions to avoid influences of different prereversal choice probabil-
ities on learning latency. Median6 95% confidence interval; p values, pairwise two-sided Wilcoxon rank sum test. C, Reward preference. Averaged choice frequencies (mean6 SEM) indicate
preferences for the four reward types. The choice frequencies were aggregated across sessions, which were truncated to have balanced block types (see Materials and Methods); p values, pairwise
two-sample binomial test. N = trial numbers. D, Initial learning from novel visual cues. Choices and reward outcomes in the initial 30 trials of two example sessions for monkey Ya (left, block
type A) and monkey Ym (right, block type B) show how the monkeys differentially associated novel visual cues to the reward types while learning from reward outcomes. Tick marks represent
choices for specific rewards; long marks indicate large-reward outcomes (rewarded trials), and short marks indicate small-reward outcomes (nonrewarded trials). Reward types in dark-gray blocks
were associated with high reward probability (P ¼ 0:8) and light-gray blocks were associated with low reward probability (P ¼ 0:2). Choice-probability curves show nine trial running averages
of choices for each reward. E, History-dependent choice probabilities. The probability of choosing each reward (mean 6 SEM) increased after choosing and receiving the specific reward. Such
influence of reward history depended on the fat and sugar content of the reward; p values, pairwise two-sample binomial test. The conditional probability of choosing each reward was computed
based on the outcomes when the reward was last offered. Left, The reward was not chosen (Nonchosen). Trial numbers LFLS, HFLS, LFHS, HFHS = 1775, 1909, 622, 342 (Ya); 1677, 1507, 1117,
1042 (Ym). Middle, The reward was chosen, but only a small reward was delivered (Nonrewarded). Trial numbers LFLS, HFLS, LFHS, HFHS = 472, 425, 1707, 1996 (Ya); 967, 1171, 1545, 1616
(Ym), Right, The reward was chosen and a large reward was delivered (Rewarded). Trial numbers LFLS, HFLS, LFHS, HFHS = 231, 206, 971, 1099 (Ya); 563, 704, 859, 953 (Ym).
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as would be suggested by ecological energy-maximization mod-
els. The nutrient preferences of the monkeys in the present learn-
ing task were broadly similar to the nutrient preferences of the
same monkeys in a previously investigated choice task (Huang et
al., 2021), with the exception that monkey Ya showed less prefer-
ence for fat reward in the current task.

To assess whether nutrient content influenced learning from
recent reward experiences, we compared the conditional choice
probabilities of the four reward types based on whether they
were chosen or rewarded in the preceding trial (Fig. 2E). Both
monkeys demonstrated a baseline preference for high-sugar

rewards; the monkeys were about two times (Ym) or three times
(Ya) more likely to choose high-sugar rewards (HFHS and
LFHS) than low-sugar rewards (HFLS and LFLS; Fig. 2E, left).
Importantly, both monkeys were more likely to repeat choices
for recently received large rewards compared with small rewards,
except for low-sugar rewards in monkey Ya (Fig. 2E), conditional
choice probability after small rewards (Nonrewarded, middle),
and large rewards (Rewarded, right)). Notably, because we intro-
duced novel visual cues for each session, these results were not
because of preferences for specific visual stimuli. Similarly, these
results cannot be simply explained by the preference for calories
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because energy-matched rewards (i.e., LFHS and HFLS) had dis-
tinct effects on subsequent choices depending on their fat and
sugar content (Fig. 2E, green and blue curves). Thus, the mon-
keys learned differently from different recent rewards, according
to their nutrient preferences.

These aggregated data showed that the monkeys had subjec-
tive preferences for specific high-nutrient rewards and tracked
changing reward probabilities depending on the nutrient content
of the rewards. Because visual cues changed every session, the
results were not explained by preferences for specific visual stim-
uli. Thus, the nutrient composition of the food rewards and the
individual preferences of the animals for sugar and fat biased
learning and choice. We next modeled these effects in trial-by-
trial data using reward-history regression models and a formal
RL approach.

Nutrient-specific reward history and choice history influence
choices of monkeys
To formally characterize nutrient-dependent learning mecha-
nisms, we followed approaches from previous studies that used
logistic regression to link the choices of monkeys to the recent
history of rewards and choices (Corrado et al., 2005; Lau and
Glimcher, 2005). In this approach, current-trial choices are mod-
eled by the sum of (1) subjectively weighted recent rewards

resulting from choices for specific options (reward history) and
(2) subjectively weighted recent choices for specific options
(choice history); the subjective weights are determined by fitting
the logistic-regression model to trial-by-trial data of current
choices, past choices, and past rewards of an individual animal.
To establish a baseline reference, we first modeled the trial-by-
trial choices of the monkeys with a logistic regression that
accounted for whether options were chosen in previous offers
(choice history) and whether previous choices were rewarded
(reward history), regardless of the nutrient composition of the
rewards (History model; see above, Materials and Methods).
Because options were randomly offered in our experiments, and
not every reward appeared on each trial, we indexed the recent
rewards and choices only when the specific option was offered
(see above, Materials and Methods). In this History model (Fig.
3A,B), the most recent rewards and choices were associated with
the highest regression coefficients, indicating a strong effect of recent
reward and recent choice on current choice, whereas regression coef-
ficients for more remote rewards and choices declined as a function
of past trials, as observed in previous studies (Corrado et al., 2005;
Lau and Glimcher, 2005).

We next modeled the contribution of individual nutrient
components (Nutrient model, see above, Materials and Methods;
Fig. 3C,D) by including nutrient-history interaction regressors
that decomposed aggregated influences of reward and choice his-
tory (Vt) into contributions from the low-nutrient baseline liquid
(Bt , yellow), high-fat content (Ft , green), and high-sugar content
(St , blue). The Nutrient model outperformed alternative models
that encoded only binary outcomes of reward and choice history
but ignored reward nutrient compositions (History model; see
Materials and Methods), with model comparisons being robust
for different history lengths (Fig. 3E). Coefficients from this
Nutrient model showed that although more recent rewards and
choices generally had stronger effects on current choices, these
effects depended on the nutrient composition of recent rewards
(Fig. 3F,G). Specifically, in monkey Ya, reward-history coefficients
for recent low-nutrient rewards were small, whereas reward-his-
tory coefficients for the most recent high-nutrient rewards, espe-
cially high-sugar rewards, were large and highly significant (Fig.
3F, left). For monkey Ym, reward-history coefficients for both the
baseline and high-nutrient rewards were large and significant and

/

choices based on the NutVal-Forget model reproduced nutrient-specific learning observed in
Figure 2E. The probability of choosing each reward (mean 6 SEM) increased with previous
reward outcomes but to different extents depending on reward fat and sugar content; p val-
ues, pairwise two-sample binomial test. F, Model comparison across RL models including the
nine combinatorial RL models, the NutRPE model (Fig. 5) and the Energy model (Fig. 4G).
The model comparison was conducted based on the AIC across testing sessions (mean 6
SEM) for monkey Ym (blue) and monkey Ym (orange). The gray line indicates the statistical
decision threshold (relative likelihood of a given model , 0.05; see above, Materials and
Methods) compared with the best-fitting NutVal-Forget model (red arrowhead). Comparisons
between any two of the other models can also be performed by taking their AIC differences.
G, Psychometric curves relating model-derived reward values to choice probability. Model-fit-
ted reward values from the NutVal-Forget model (black) outperformed the Energy model
(Energy RL, red) and performed equally well as the ObjVal model in explaining choices of the
monkeys (see above, Materials and Methods). Inset, DAIC ¼ AICEnergy � AICNutrient . Pcorr,
Percentage correctly modeled choices 6 SEM pR2, pseudo-R2 6 SEM; *p , 0.05, **p ,
0.01, ***p, 0.001. n.s.: not significant.

Figure 5. Model recovery analysis. A, B, We evaluated the sensitivity and reliability of our model comparison based on (A) the proportion of correctly recovered models from a specified
simulated model (confusion matrix) and (B) the confidence of best-model predictions using our approach (inversion matrix; see above, Materials and Methods). Colors indicate the conditional
probabilities stated above each matrix. Left, The nine combinatorial RL models. Red boxes in the matrices indicate data for our best-fitting NutVal-Forget model. The model comparison correctly
identified 82% of the simulated sessions from the NutVal-Forget model (compare the conditional probabilities in the sixth row of A). Additionally, the NutVal-Forget model was the most prob-
able generative model when predicted as the best-fitting model (compare the posterior probabilities in the sixth column of B).
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declined for more remote rewards, indicating both nutrient-spe-
cific and nutrient-independent effects of reward history (Fig. 3F,
right). In both monkeys, nutrient-specific choice history effects for
fat and sugar were large and significant for recent choices and
declined for more remote choices (Fig. 3G). Critically, because
the nutrient-specific history coefficients were modeled alongside
the baseline history coefficients, they explained distinct parts
of the variation in the choices of the monkeys. In other words,
significant coefficients for fat- and sugar-specific reward and
choice history could not be explained by general, nutrient-in-
dependent history effects, which were captured by the baseline
regressors. Notably, nutrient-specific reward history captured
effects on choices that derived from the difference between
rewarded and unrewarded choices for particular nutrients.
By contrast, choice history captured effects related to recent

choices for particular nutrients regardless of reward outcome
(Lau and Glimcher, 2005); choice history effects, therefore,
reflected the preference of the monkeys for particular rewards
independent of reward probability. (Accordingly, in a supple-
mental analysis without choice-history regressors, nutrient-
specific reward-history coefficients increased to reflect nutrient
preferences of the monkeys as well as the effect of reward
probability.)

In summary, logistic-regression analysis showed that the
choices of the monkeys were influenced by the history of recently
obtained fat and sugar rewards and by the history of recently
made choices for fat and sugar rewards. These nutrient-specific
effects of reward history and choice history were not accounted
for by the separately modeled general (i.e., nutrient independent)
reward- and choice-history effects.
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Figure 6. Parameter recovery analysis. A–H, Correlations between simulated and fitted parameters for each of the eight free parameters in the NutVal-Forget model, including (A) learning
rate, a; (B) inverse temperature, b ; (C) side bias, b 0; (D) value-forgetting rate, d ; (E) discount factor, d; (F) fat value, VF ; (G) sugar value, VS ; and (H) fat–sugar interaction, VFS. The simula-
tion was performed based on session-specific fitted parameters from each monkey to approximate the valid range of parameters (see above, Materials and Methods). The value parameters in
F–H were log transformed (base 2). Dashed line, Unity line; red line, least-square regression line. Inset, Slope, the fitted slope of the regression line; p value was estimated based on the least-
square linear fit of the data points. I, Parameter trade-off. Cross-correlation between the eight fitted parameters in A–H identified mutual dependence between free parameters in the NutVal-
Forget model.
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Reinforcement learning based on nutrient-specific values
Having established that the choices of the monkeys depended on
the reward history for specific nutrients, we next modeled the
effect of nutrients on learning and choice within the RL frame-
work. Learning from rewards is formalized by RL models that
update trial-by-trial expected values for each option based on
reward outcomes. However, our results show that the monkeys
were sensitive not only to whether they received a reward but
also to the nutrient composition of the reward. Accordingly, RL
models may require nutrient-specific parameters to account for
choices in dynamic environments with varying nutrient-reward
composition as tested here. We therefore developed a novel, nutri-
ent-sensitive RL model (NutVal-Forget model, see above, Materials
and Methods) that incorporated a subjective nutrient-value func-
tion to capture how specific nutrients (fat, sugar) may differentially
influence the trial-by-trial updating of expected reward values and
their influence on choice (Fig. 4A). Instead of updating the value of
the chosen option with a binary reward outcome, the NutVal-
Forget model updated values based on animal-specific subjective
values for fat, sugar, and fat–sugar interaction, as follows (We note
that this model assumes that the animals are sensitive to fat, sugar,
and their interaction, and combine these nutrient valuations into
integrated values for decision-making.):

Qi t1 1ð Þ ¼ Qi tð Þ1a � Vi tð Þ � R tð Þ � Qi tð Þ½ �

Vi tð Þ ¼ VIF tð Þ
F � VIS tð Þ

S � VIF tð Þ�IS tð Þ
FS

VF � VS � VFS
;

R tð Þ ¼ 1 ; if rewarded
d ; if not rewarded

d 2 0; 1½ �
�

IFðtÞ ¼ 1; i tð Þ ¼ HFLS;HFHS
0; i tð Þ ¼ LFLS; LFHS

;

�

ISðtÞ ¼ 1; i tð Þ ¼ LFHS;HFHS
0; i tð Þ ¼ LFLS;HFLS:

�

In this model, the expected value for reward i, Qi, was
updated depending on both the reward outcome on trial t, RðtÞ,
(rewarded or not rewarded) and the chosen reward type on trial
t, iðtÞ. The animal-specific subjective value for reward i, Vi tð Þ,
was constructed by the subjective valuation of the fat level of the
reward, IFðtÞ, and sugar level, ISðtÞ, based on fixed subjective val-
ues for fat (VF), sugar (VS), and their interaction (VFS). Thus, we
use Qi to refer to the trial-by-trial updated values in the RL
model, following the term Q-value in the RL literature. By con-
trast, we use Vi to refer to the animal-specific subjective values
for nutrient components, which were fixed in each session.
Additionally, we included a discount factor d 2 0; 1½ � as a free
parameter to capture the reduced but nutrient-dependent effects
of the small rewards compared with the large rewards (Fig. 2E).
Thus, the free parameters in the nutrient-sensitive RL model
included the three nutrient-value parameters—related to fat,
sugar, and their interaction—the discount factor for the small
reward, as well as other standard RL parameters (see above,
Materials and Methods). Because subjective values were meas-
ured compared with the low-nutrient baseline reward, nutrient-
value parameters (VF , VS) larger than 1 suggested a preference
for the respective nutrient; a VFS parameter larger than 1 indi-
cated supra-additive effects of fat and sugar on subjective value.

Without loss of generality, we normalized all reward values to
the value of the high-fat high-sugar reward VF � VS � VFSð Þ, to
constrain all value parameters between 0 and 1. For options that
were not chosen (unchosen) and not offered (unoffered) on
a given trial, we allowed their expected values to decay as
follows:

Qj t1 1ð Þ ¼ Qj tð Þ � 1� dð Þ; 8j 6¼ iðtÞ;

where the values of the unchosen and unoffered rewards, Qj tð Þ,
were discounted according to a forgetting rate (d ), which would
be 0 for perfect value memory. We referred to this RL model as
nutrient-sensitive because it differentially learned from reward
outcomes based on their nutrient content. Specifically, different
from canonical RL models, our model constructed reward values
for choice options based on subjective values for the nutrient
components of each reward. Although canonical RL models can
be applied to situations with multiple outcomes, they would not
estimate values based on the nutrient (or other intrinsic) compo-
nents of the outcomes that are common to different outcomes.

We fitted the NutVal-Forget model to the trial-by-trial choice
data and reward outcomes in each session, separately for both
monkeys (see above, Materials and Methods). The resulting best-
fitting parameter values for the nutrient components indicated
that across sessions, both monkeys assigned higher values to the
high-sugar rewards and that monkey Ym assigned a higher value
to fat but monkey Ya did not (Fig. 4B). Fat and sugar showed a
small but significant supra-additive effect on choices in monkey
Ya and a small, nonsignificant negative interaction in monkey
Ym. In an extended model (NutAlphaVal-Forget model; see
above, Materials and Methods), we examined whether nutrients
had additional influences on the learning rates in RL models,
separate from their effect on reward values, but did not find evi-
dence for nutrient-specific learning rates in either monkey (Fig.
4C). (Further, learning latencies resulting from simulated
choices for the actual trial sequences that the animals experi-
enced using the NutVal-Forget model showed no significant
differences among the four rewards; p . 0.08 for all pairwise
comparisons.) The nutrient values in the NutVal-Forget model
were largely stable across testing sessions, despite some session-
specific variation (Fig. 4D). Additionally, both monkeys showed
evidence of forgetting the values of unoffered and unchosen
options, according to the small but significant value-forgetting
rates (Fig. 4C). In both monkeys, our main NutVal-Forget
model reproduced the behavioral signatures of nutrient-specific
learning from Figure 2E (Fig. 4E). In model comparisons across
sessions, the NutVal-Forget model outperformed alternative RL
models with variations on value updating (Basic, Asym, Forget)
and nutrient-specific parameters (Binary, NutVal, NutValAlpha;
Fig. 4F; see above, Materials and Methods). Furthermore, psy-
chometric curves illustrated that subjective values derived from
the NutVal-Forget model accounted for the choices of the mon-
keys, confirmed by model-fit indicators across sessions (pseudo-
R2, monkey Ya = 0.80 6 0.02; monkey Ym = 0.48 6 0.02;
percentage of correctly modeled choices, monkey Ya = 94.7 6
1.3%; monkey Ym = 83.46 0.7%; Fig. 4G, black).

To rule out the possibility that the differential learning from
rewards was driven by the energy content of nutrients rather
than by specific nutrients, as assumed in ecological foraging
models, we compared the performance of our main NutVal-
Forget model (Fig. 4G, black), which estimated separate effects of
sugar and fat components on subjective values, to an RL model
based on the energy content of the rewards (Energy model; Fig.
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4G, red). The key difference of the Energy model was that it
learned equally from the isocaloric HFLS and LFHS rewards,
although they differed in fat and sugar levels (Fig. 1B). In both
monkeys, the NutVal-Forget model (Fig. 4G, black and inset)
provided a significantly better fit to the choices of the monkey
than the Energy model (Fig. 4G, red data and inset), consistent
with the preference of the monkeys for high-sugar over high-fat
stimuli of matched energy content (Fig. 2C).

For completeness, we also constructed an object-specific RL
model with separate values for the four different rewards as free
parameters that were fixed in each session (ObjVal model).
Different from this object-specific model, which specified separate
values for all available rewards, our main NutVal-Forget model
specified values for the two nutrient components that were com-
mon to the different rewards. Our main NutVal-Forget model
performed similarly to the ObjVal model, despite having one
fewer free parameter (Fig. 4G, yellow). Although both models per-
formed similarly in this dataset, we note that the nutrient-based
model is more flexible compared with the stimulus-specific model
because it uses a value function for particular reward compo-
nents (fat, sugar) rather than for each individual reward. Thus,
the nutrient-based model could use the same value function for
increasing numbers of different rewards (provided they were
based on common nutrient components), whereas the object-
specific model would require one additional free parameter for
each reward type.

We tested the sensitivity and reliability of our model compari-
son in a model recovery analysis (Fig. 5; see above, Materials and
Methods). We found that the model comparison correctly identi-
fied 82% of the simulated sessions from the NutVal-Forget model
(Fig. 5A) and that the NutVal-Forget model was the most proba-
ble generative model given our model comparison result (Fig.
5B). Notably, the winning NutVal-Forget model also generalized
well to other candidate models (Fig. 5A), likely because of the
negligible influences of nonrelevant, additional parameters, for
example, nutrient-specific learning rates (Fig. 4C). The NutVal-
Forget model was also associated with relatively lower absolute
confidence (Fig. 5B, red square), likely because it was compared
with a large number of nested (i.e., overall similar) models. We
also tested the identifiability of the parameters in a parameter re-
covery analysis and examined the trade-offs between parameters
(Fig. 6). Importantly, the reliability of the parameter estimates in
Figure 4B was supported by the successful recovery of model
parameters from simulated sessions (Fig. 6A–H) despite some
correlation between VF and VS (Fig. 6I). Further, the parameter-
correlation matrix (Fig. 6I) indicated a trade-off between specific
parameters; (1) we found a positive correlation between VF and
VS, suggesting that preferences for fat and sugar covaried across
sessions; (2) we found that the right-side bias (b 0) was positively
correlated with the forgetting rate (d ) and inversely correlated
with VS and VFS, indicating that nutrient-influences on choices
were weaker in periods when monkeys were apparently less
focused on the task (displaying side-bias and higher forgetting
rate); and (3) we found that the discount rate (d) between large
and small rewards (which was fixed across reward types) was
inversely correlated with nutrient values; this was expected in our
models because when any of the nutrient value increases, values
for other reward types decrease naturally because of value nor-
malization (see above, Materials and Methods) and the fixed dis-
count rate would decrease to adapt to such inadvertent influences
from value normalization.

Thus, the choices of the monkeys for probabilistic rewards
with defined nutrient compositions were well explained by a

nutrient-sensitive RL model that assigned subjective values of
specific fat and sugar components to reward outcomes and
choice options.

Value updating based on nutrient-specific reward prediction
errors
Our nutrient-sensitive RL model suggested that the monkeys
tracked fat and sugar value components of probabilistic reward
outcomes and integrated them into a scalar value that guided
choices. To better understand the dynamics of nutrient-specific
value updating, we examined an extended nutrient prediction
error-based RL model (NutRPE). In this model, the reward value
on trial t, Qi tð Þ; was decomposed into fat and sugar value com-
ponents (Fig. 7A; see above, Materials and Methods). These value
components (1) separately adapted to changes in reward proba-
bilities based on fat and sugar reward prediction errors (RPEs)
from experienced nutrient outcomes and (2) were flexibly com-
bined into the integrated reward value for each option, based on
the nutrient preference of the animal (Fig. 7A). On each trial, the
NutRPE model compared the expected fat and sugar value com-
ponents with the obtained nutrient outcomes and computed nu-
trient-specific RPEs to update reward expectations. Thus, the
model reveals the trial-by-trial dynamics of latent learning varia-
bles in dynamic nutrient-reward choices, including nutrient-spe-
cific values, integrated reward values, and nutrient-specific RPEs.
We examined this model in part because it could serve as a tool
in future studies to identify neuronal signals related to nutrient-
specific learning and decision variables.

By capturing the dynamic updating and subjective integration
of the monkeys of fat-sugar value components, the model closely
tracked evolving choice patterns for nutritionally distinct rewards
in single sessions (Fig. 7B). The NutRPE model provided a good
fit to the choices of the monkeys across sessions according to psy-
chometric curves and model-fit indicators (Fig. 7C; pseudo-R2,
monkey Ya = 0.826 0.01; monkey Ym = 0.466 0.02; percentage
of correctly modeled choices, monkey Ya = 95.86 0.8%; monkey
Ym = 82.3 6 1.0%). The trajectories of fat value and sugar value
within single sessions characterized the idiosyncratic sensitivity
of each monkey to fat and sugar when updating expected reward
values (Fig. 7D). Specifically, reward values in monkey Ya were
primarily driven by the sugar value component, which was updated
after the monkey received high-sugar rewards and tracked their
blockwise changes in reward probabilities, whereas the fat-value
component varied much less within a session (Fig. 7D, left). In
monkey Ym, both fat and sugar value components contrib-
uted to value updating and tracked fluctuating reward proba-
bilities throughout the session (Fig. 7D, right).

The NutRPE model also allowed us to examine the dynamics
of nutrient-specific RPEs that separately updated the fat and
sugar value components. For instance, in the first block of the
single-session data in Figure 7E, when the LFHS reward (Fig.
7B,E, blue data, trials 1–100) had a high reward probability,
LFHS was frequently chosen and produced mostly positive sugar
RPEs. The few negative sugar RPEs were because of the occa-
sional low reward outcomes and fluctuations of values during
learning. The magnitude of sugar RPEs decreased during this
block while the monkey learned the reward value more accurately.
After probability reversal, LFHS was chosen less frequently and
mostly produced low-magnitude rewards. However, it produced a
few large positive sugar RPEs during that period (Fig. 7E, blue
data, trials 100–200), which illustrated that even low rewards can
produce large positive sugar RPEs if the reward contained sugar,
because reward outcomes were scaled by the nutrient-specific sub-
jective value in the NutRPE model. By contrast, when the high-fat
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low-sugar stimulus was associated with high reward probability in
the third block (HFLS; Fig. 7B,E, green data), it consistently pro-
duced large rewards but only very small sugar RPEs because of the
low sugar content of the rewards.

We note that both the NutRPE model and the NutVal-Forget
model have eight free parameters. Although the NutRPE model
does not have a free parameter for fat–sugar interaction (because
it assumes multiplication of fat values and sugar values), it does
have two separate learning rates for fat-value and sugar-value
updating. A direct comparison between the NutRPE model and the
NutVal-Forget model (Fig. 4F) showed that these two models per-
formed equally well in monkey Ya, and the NutVal-Forget model
outperformed the NutRPE model in monkey Ym. Therefore, the
NutRPE model revealed trial-by-trial nutrient value dynamics with-
out compromising model performance.

Thus, subjective nutrient-value functions guided the dynamic
updating and integration of reward values based on nutrient-spe-
cific reward components and related nutrient-specific RPEs. The
nutrient RPEs were sensitive to both the presence of a specific
nutrient in the experienced reward outcome and the reward size.
These results provide a basis for hypotheses about candidate neu-
rons encoding nutrient-specific values and RPEs (Fig. 8), as
explained next in Discussion.

Discussion
We investigated choices of monkeys for nutrient-defined rewards
under varying reward probabilities and found that the nutrient
composition of rewards strongly influenced choices and learning.
As in our previous study involving the same animals (Huang et

A

Choice
F

S

Fat prediction error

Sugar prediction error

Fat
value
Sugar
value

Reward
value

R Outcome

1

0.5

0

HFHS
LFHS
HFLS
LFLS

100 200 300 400 5000

P
(c

ho
ic

e|
of

fe
re

d)

B

C

D

Trials

P = 0.2P = 0.8N = 525 trials
Monkey Ym

mY yeknoMaY yeknoM

–1 –0.5 0 0.5 1
0

0.5

1

–0.5 0 0.5 1
0

0.5

1

P
(le

ft)

P
(le

ft)

QL – QR QL – QR

–50

0

50

NutVal-Forget

Nut-RPE

 Δ
 A

IC

–50

0

50

NutVal-Forget

Nut-RPE

 Δ
 A

IC

N = 5,321 trials
(12 sessions)

N = 4,624 trials
(11 sessions)

p = 0.36 p = 0.046

Pcorr = 83.4 ± 0.7 %
pR2 = 0.48 ± 0.02

Pcorr= 94.7 ± 1.3 %
pR2 = 0.80 ± 0.02

Pcorr = 82.2 ± 1.0 %
pR2 =  0.46 ± 0.02

Pcorr = 95.8 ± 0.8 %
pR2 =  0.82 ± 0.01

Fa
t v

alu
e1

0

Sugar value
1

50

00

100

1
0

Sugar value
1

50

00

100

0.5 0.5
0.5

HFHS

HFLS

LFHS
LFLS

HFHS

HFLS

LFHS

LFLS

0.5

Fa
t v

alu
eTr
ia

ls
 (%

)

Monkey Ya Monkey Ym Sugar prediction error

Trials
100 200 300 400 5000

HFHS

LFHS

HFLS

LFLS

P = 0.2P = 0.8N = 525 trials
Monkey Ym

E

–1

Session 80-222

Session 81-150

051-18 noisseS051-18 noisseS

Figure 7. Learning with nutrient-specific reward prediction errors. A, NutRPE model. Subjective values for fat (top, green) and sugar (bottom, blue) were updated based on differences
between reward outcomes and expected nutrient values (NPEs); fat values and sugar values were multiplied into integrated reward values to guide choices. B, Single-session data for choices,
rewards, and modeled choice probabilities based on the NutRPE model (monkey Ym). Top, Model-predicted choices (faint lines) tracked the actual choices of monkey Ym (thick lines) for nutrient-
defined rewards. Bottom, The trial-by-trial record of choices and reward outcomes. Tick marks represent choices for each reward, long marks indicate large-reward outcomes (rewarded trials); short
marks indicate small-reward outcomes (nonrewarded trials). C, Psychometric curves based on value estimates from the NutRPE model accounted for the choices of the monkeys with good model-fit
indicators. Pcorr, Percentage correctly modeled choices6 SEM pR2: pseudo-R26 SEM. D, Single-session dynamics of nutrient values. Reward values in monkey Ya were dominated by the sugar val-
ues. In the NutRPE model, these sugar values were updated after choices of high-sugar liquids and tracked blockwise changes in reward probability. In monkey Ym, both fat values and sugar values
contributed to value updating and tracked fluctuating reward probabilities. E, Sugar prediction errors in the single session shown in B. Prediction errors were sensitive to sugar content and reward
size, determined by model-derived nutrient value parameters fitted to the choices of the monkey. Single-session data in B, D, E are the same sessions as in Fig. 1D (right).

Huang and Grabenhorst · Nutrient-Sensitive Reinforcement Learning J. Neurosci., March 8, 2023 • 43(10):1714–1730 • 1727



al., 2021), the choices of the monkeys
reflected individual fat and sugar preferen-
ces, consistent with the assignment of sub-
jective values to nutrients. Importantly, in
the present study we show that these nutri-
ent preferences affected how the animals
adapt their choices to changing reward
probabilities during learning. Specifically,
the monkeys were more likely to repeat
choices that led to rewards containing pre-
ferred nutrients and frequently chose these
options even under low reward probabilities.
As in previous studies (Lau and Glimcher,
2005; Tsutsui et al., 2016), more recent
rewards had a stronger influence on current
choice. Critically, we found that this impact
of reward history depended on the nutri-
ent composition of the reward; past
rewards that were high in preferred sugar
content influenced subsequent choices
more strongly than less preferred low-nu-
trient or high-fat rewards. Choice history regardless of reward
outcomes also had a significant nutrient-dependent effect
on choice, with stronger effects of past choices for preferred
nutrients. We developed a nutrient-sensitive RL model that
incorporated these influences of preferred nutrients on learning
and choice. The model updated the values of sugar and fat com-
ponents of expected rewards trial by trial, based on recently
experienced rewards, and integrated these nutrient-specific val-
ues into scalar reward values that explained the choices of the
monkeys. Value updating in response to particular nutrient out-
comes was governed by nutrient-specific RPEs. Thus, different
from canonical RL models that learn from binary reward out-
comes (Sutton and Barto, 1998), our nutrient-sensitive RL model
learned based on the nutrient components of the rewards, which
influenced the subjective values of choice options and reward out-
comes. Nutrient effects on learning and choice were not explained
by energy content or other reward properties (flavor, salt, pro-
tein), which we controlled, or preferences for visual cues, which
we changed every session. Our results suggest that nutrients
constitute important reward components that influence
subjective valuation, learning, and choice and that RL mod-
els can be usefully extended to incorporate nutrient-specific
effects on behavior.

Previous studies in macaques revealed important factors
influencing learning and choice, including reward and choice
history (Corrado et al., 2005; Lau and Glimcher, 2005; Samejima
et al., 2005; Kennerley et al., 2006; Lee et al., 2012; Seo et al.,
2012; Tsutsui et al., 2016), the variance of recent rewards
(Grabenhorst et al., 2019b), novelty and rarity of choice objects
(Costa et al., 2019; Rothenhoefer et al., 2021), and social observa-
tions (Grabenhorst et al., 2019a). Because these studies did not vary
the composition of reward outcomes, they could not test how
specific nutrients affect learning and choice. Other studies demon-
strated that macaques have sophisticated preferences for differ-
ent reward types that comply with principles of economic choice
theory (Padoa-Schioppa and Assad, 2006; Lak et al., 2014;
Raghuraman and Padoa-Schioppa, 2014; Pastor-Bernier et al.,
2017) but did not examine how nutrient rewards affect RL. Here,
we reasoned that nutrients represent biologically critical, intrin-
sic reward components that are essential for survival and thus
should affect learning and choice in dynamic reward envi-
ronments to ensure stable nutrient intake. By systematically

manipulating the sugar and fat content of liquid rewards, we
showed that monkeys have subjective preferences for specific
nutrients and that these preferences influence how monkeys
adapt their choices to changing reward probabilities. Similar to
one previous study (Raghuraman and Padoa-Schioppa, 2014),
our monkeys based their choices on both subjective reward pref-
erences and reward probabilities. However, different from that
study, our monkeys were required to learn reward probabilities
from experience rather than from explicit pretrained cues; we
also systematically varied the nutrient composition of rewards
rather than varying reward type regardless of nutrient content.
Thus, beyond the general effects of reward type, we determined
that specific nutrients differentially affect learning and choice.
We do not suggest that nutrients influence learning independ-
ently of subjective value. Rather, our data and model suggest that
nutrients influence learning by affecting the subjective values
that animals assigned to reward outcomes and choice options.

In our study, monkeys adapted their choices to changing
reward probabilities to obtain large amounts of preferred nutri-
ent-defined rewards; when probabilities changed, the monkeys
could switch their choices to less-preferred but more available
alternatives. The animals were not required to learn the nutrient
composition of novel foods as the four rewards used were highly
familiar to the animals. This situation resembles natural scenar-
ios in which monkeys regularly forage for a range of familiar
food rewards and must determine which foods are currently
available (Cui et al., 2018, 2019, 2020). Wild macaques solve
such foraging problems by adapting their choices to short-term
changes in reward availability (e.g., switching between foraging
grounds) and to longer-term (e.g., seasonal) changes. For exam-
ple, preferred foods, such as fat- and protein-rich seeds may only
be available in autumn and winter. Accordingly, wild macaques
adapt their foraging patterns to pursue different foods in other
seasons, such as leaves and herbs, while maintaining a stable nutri-
ent balance (Cui et al., 2019). Our simple repeated-choice para-
digm captured these features of the foraging environments of
macaques in the laboratory. Our findings suggest that the compu-
tations underlying nutrient-adaptive foraging choices involve the
assignment of subjective values to specific nutrients, the integra-
tion and updating of nutrient values from recently experienced
reward outcomes, and the comparisons of values to make choices.

Flavor-nutrient conditioning is an important process in feed-
ing and foraging behavior (de Araujo et al., 2020; Dayan, 2022);

Figure 8. Hypothesized neuron types encoding nutrient-specific learning and decision variables. A, Fat value neurons sig-
nal the trial-by-trial fat-specific value component and update their activity based on fat-specific reward prediction errors. B,
A similar process operates for sugar-value neurons. C, Inputs from fat and sugar value neurons may converge onto reward
value neurons that signal integrated, scalar value, depending on the subjective nutrient preferences and integrated reward
prediction errors to guide learning and choice.
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however, it is unlikely to have played a major role in our study.
The animals were highly familiar with the four different nutri-
ent-defined rewards through task training over many months.
Thus, flavor-nutrient conditioning effects would have stabilized
by the time the present experiments were conducted.

We extended a canonical RL model to account for the observed
nutrient sensitivity of the choices of the monkeys. Different from
RL models that learn from binary reward outcomes, our nutrient-
sensitive RL model evaluated rewards using an animal-specific nu-
trient-value function. This nutrient-value function detected the fat
and sugar content of the reward in addition to reward size and
weighted the reward according to the preferences of the individual
monkey for fat, sugar, and their interaction. As a consequence, the
model learned expected values of choice options based on the nu-
trient composition of the reward and nutrient preferences of the
monkeys, rather than based on reward frequency regardless of
nutrient content as in standard RL models. An extension of this
model decomposed subjective values into separate fat and sugar
value components and updated these value components with
nutrient-specific prediction errors that considered the differ-
ence between experienced and expected values for fat and sugar
components. Although not investigated here, our experimental
paradigm and model could be extended to incorporate internal,
physiological set points as proposed in recent homeostatic RL
(Keramati and Gutkin, 2014). Our model could also separately
model short-term influences of sensory, hedonic food compo-
nents on learning and choice, including recently demonstrated
fat-related oral-texture effects (Huang et al., 2021) and longer-
term effects related to postingestive processing (Dayan, 2022).

Our findings have implications for understanding the neural
mechanisms underlying RL. We described a nutrient-specific
learning process that updates value estimates for separate fat and
sugar reward components and integrates this information into
scalar values that guide adaptive choices. At the neural level, this
mechanism would require neurons that encode individual nutri-
ent values and dynamically update them via nutrient-specific
RPEs (Fig. 8). By decomposing trial-by-trial reward values that
guide RL into nutrient-value components, our model specifies
computational signals that could help identify such neurons (Fig.
7). Midbrain dopamine neurons, orbitofrontal cortex, and amyg-
dala participate in value-based decision-making, RL, and food
evaluation (Padoa-Schioppa and Assad, 2006; Grabenhorst et al.,
2010, 2012; Murray and Rudebeck, 2013; Lak et al., 2014;
Stauffer et al., 2014; Suzuki et al., 2017; Murray and Rudebeck,
2018; Rolls et al., 2018; Grabenhorst et al., 2019a; Averbeck and
Murray, 2020) and thus constitute targets for testing these
hypotheses. For example, it will be interesting to determine
whether primate dopamine neurons encode RPEs for spe-
cific nutrients. Recent studies demonstrated that dopamine
neurons encode RPEs in terms of economic utility, thereby
integrating influences of reward type, quantity, probability,
and risk (Lak et al., 2014; Stauffer et al., 2014). It remains to
be tested whether the presently observed nutrient-specific
effects on learning and choice are incorporated into the
RPE signal of the dopamine neurons or whether nutrient-
specific reward components are processed in other reward
structures such as the orbitofrontal cortex and amygdala,
where single neurons encode nutrients and sensory reward
properties (Kadohisa et al., 2005; Huang and Grabenhorst,
2022).

In summary, our results identify nutrients as important
reward components that influence subjective valuations, choices,
and learning of monkeys. These processes were well described by

a nutrient-sensitive RL model that updated the value of expected
rewards based on their sugar and fat components using nutrient-
specific RPEs. Our data and nutrient-sensitive RL model can
serve as tools to guide future studies that aim to uncover nutri-
ent-specific learning and decision computations and their neuro-
physiological implementations.
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