Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Cellular/Molecular

A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage

Amanda Henton, Yanjun Zhao and Thanos Tzounopoulos
Journal of Neuroscience 29 March 2023, 43 (13) 2277-2290; DOI: https://doi.org/10.1523/JNEUROSCI.1070-22.2023
Amanda Henton
1Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
2Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yanjun Zhao
1Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thanos Tzounopoulos
1Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thanos Tzounopoulos
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Damage to sensory organs triggers compensatory plasticity mechanisms in sensory cortices. These plasticity mechanisms result in restored cortical responses, despite reduced peripheral input, and contribute to the remarkable recovery of perceptual detection thresholds to sensory stimuli. Overall, peripheral damage is associated with a reduction of cortical GABAergic inhibition; however, less is known about changes in intrinsic properties and the underlying biophysical mechanisms. To study these mechanisms, we used a model of noise-induced peripheral damage in male and female mice. We uncovered a rapid, cell type-specific reduction in the intrinsic excitability of parvalbumin-expressing neurons (PVs) in layer (L) 2/3 of auditory cortex. No changes in the intrinsic excitability of either L2/3 somatostatin-expressing or L2/3 principal neurons (PNs) were observed. The decrease in L2/3 PV excitability was observed 1, but not 7, d after noise exposure, and was evidenced by a hyperpolarization of the resting membrane potential, depolarization of the action potential threshold, and reduction in firing frequency in response to depolarizing current. To uncover the underlying biophysical mechanisms, we recorded potassium currents. We found an increase in KCNQ potassium channel activity in L2/3 PVs of auditory cortex 1 d after noise exposure, associated with a hyperpolarizing shift in the minimal voltage activation of KCNQ channels. This increase contributes to the decreased intrinsic excitability of PVs. Our results highlight cell-type- and channel-specific mechanisms of plasticity after noise-induced hearing loss and will aid in understanding the pathologic processes involved in hearing loss and hearing loss-related disorders, such as tinnitus and hyperacusis.

SIGNIFICANCE STATEMENT Noise-induced damage to the peripheral auditory system triggers central plasticity that compensates for the reduced peripheral input. The mechanisms of this plasticity are not fully understood. In the auditory cortex, this plasticity likely contributes to the recovery of sound-evoked responses and perceptual hearing thresholds. Importantly, other functional aspects of hearing do not recover, and peripheral damage may also lead to maladaptive plasticity-related disorders, such as tinnitus and hyperacusis. Here, after noise-induced peripheral damage, we highlight a rapid, transient, and cell type-specific reduction in the excitability of layer 2/3 parvalbumin-expressing neurons, which is due, at least in part, to increased KCNQ potassium channel activity. These studies may highlight novel strategies for enhancing perceptual recovery after hearing loss and mitigating hyperacusis and tinnitus.

  • auditory cortex
  • cortical plasticity
  • hearing loss
  • intrinsic plasticity
  • KCNQ potassium channels

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (13)
Journal of Neuroscience
Vol. 43, Issue 13
29 Mar 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage
Amanda Henton, Yanjun Zhao, Thanos Tzounopoulos
Journal of Neuroscience 29 March 2023, 43 (13) 2277-2290; DOI: 10.1523/JNEUROSCI.1070-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage
Amanda Henton, Yanjun Zhao, Thanos Tzounopoulos
Journal of Neuroscience 29 March 2023, 43 (13) 2277-2290; DOI: 10.1523/JNEUROSCI.1070-22.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • auditory cortex
  • cortical plasticity
  • hearing loss
  • intrinsic plasticity
  • KCNQ potassium channels

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Structure and Function of Neuronal Circuits Linking Ventrolateral Preoptic Nucleus and Lateral Hypothalamic Area
  • Parvalbumin-Positive Interneurons in the Medial Prefrontal Cortex Regulate Stress-Induced Fear Extinction Impairments in Male and Female Rats
  • Spinal Basis of Direction Control during Locomotion in Larval Zebrafish
Show more Research Articles

Cellular/Molecular

  • Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig
  • The SphK1/S1P Axis Regulates Synaptic Vesicle Endocytosis via TRPC5 Channels
  • Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαq and Gαs Activate the Caenorhabditis elegans Egg-Laying Muscles
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.