Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Cellular/Molecular

Transient and Sustained Ganglion Cell Light Responses Are Differentially Modulated by Intrinsically Produced Reactive Oxygen Species Acting upon Specific Voltage-Gated Na+ Channel Isoforms

Benjamin J. Smith, Cyrus F. McHugh, Arlene A. Hirano, Nicholas C. Brecha and Steven Barnes
Journal of Neuroscience 29 March 2023, 43 (13) 2291-2304; DOI: https://doi.org/10.1523/JNEUROSCI.1723-22.2023
Benjamin J. Smith
1Doheny Eye Institute, University of California, Los Angeles, California 91103
2Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cyrus F. McHugh
1Doheny Eye Institute, University of California, Los Angeles, California 91103
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arlene A. Hirano
2Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arlene A. Hirano
Nicholas C. Brecha
2Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
3Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
5Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
6Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven Barnes
1Doheny Eye Institute, University of California, Los Angeles, California 91103
2Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
3Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Steven Barnes
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Increasing spike rates drive greater neuronal energy demand. In turn, mitochondrial ATP production leads to the generation of reactive oxygen species (ROS) that can modulate ion channel gating. Does ROS production autoregulate the excitability of a neuron? We investigated the links between retinal ganglion cell (RGC) excitability and spike activity-driven ROS production in male and female mice. Changes to the light-evoked and current-evoked spike patterns of functionally identified αRGC subtypes, along with their NaV channel-gating properties, were recorded during experimentally induced decreases and increases of intracellular ROS. During periods of highest spike rates (e.g., following light onset in ON sustained RGCs and light offset in OFF sustained RGCs), these αRGC subtypes responded to reductions of ROS (induced by catalase or glutathione monoethyl ester) with higher spike rates. Increases in ROS (induced by mercaptosuccinate, antimycin-A, or H2O2) lowered spike rates. In ON and OFF transient RGCs, there were no changes in spike rate during ROS decreases but increased ROS increased spiking. This suggests that endogenous ROS are intrinsic neuromodulators in RGCs having high metabolic demands but not in RGCs with lower energy needs. We identified ROS-induced shifts in the voltage-dependent gating of specific isoforms of NaV channels that account for the modulation of ON and OFF sustained RGC spike frequency by ROS-mediated feedback. ROS-induced changes to NaV channel gating, affecting activation and inactivation kinetics, are consistent with the differing spike pattern alterations observed in RGC subtypes. Cell-autonomous generation of ROS during spiking contributes to tuning the spike patterns of RGCs.

SIGNIFICANCE STATEMENT Energy production within retinal ganglion cells (RGCs) is accompanied by metabolic by-products harmful to cellular function. How these by-products modulate the excitability of RGCs bears heavily on visual function and the etiology of optic neuropathies. A novel hypothesis of how RGC metabolism can produce automodulation of electrical signaling was tested by identifying the characteristics and biophysical origins of changes to the excitability of RGCs caused by oxidizing by-products in the retina. This impacts our understanding of the pathophysiology of RGC dysfunction, supporting an emerging model in which increases in oxidizing chemical species during energy production, but not necessarily bioenergetic failure, lead to preferential degeneration of specific subtypes of RGCs, yielding loss of different aspects of visual capacity.

  • action potential
  • ganglion cell
  • reactive oxygen species
  • retina
  • RGC
  • sodium channel

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (13)
Journal of Neuroscience
Vol. 43, Issue 13
29 Mar 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Transient and Sustained Ganglion Cell Light Responses Are Differentially Modulated by Intrinsically Produced Reactive Oxygen Species Acting upon Specific Voltage-Gated Na+ Channel Isoforms
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Transient and Sustained Ganglion Cell Light Responses Are Differentially Modulated by Intrinsically Produced Reactive Oxygen Species Acting upon Specific Voltage-Gated Na+ Channel Isoforms
Benjamin J. Smith, Cyrus F. McHugh, Arlene A. Hirano, Nicholas C. Brecha, Steven Barnes
Journal of Neuroscience 29 March 2023, 43 (13) 2291-2304; DOI: 10.1523/JNEUROSCI.1723-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Transient and Sustained Ganglion Cell Light Responses Are Differentially Modulated by Intrinsically Produced Reactive Oxygen Species Acting upon Specific Voltage-Gated Na+ Channel Isoforms
Benjamin J. Smith, Cyrus F. McHugh, Arlene A. Hirano, Nicholas C. Brecha, Steven Barnes
Journal of Neuroscience 29 March 2023, 43 (13) 2291-2304; DOI: 10.1523/JNEUROSCI.1723-22.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • action potential
  • ganglion cell
  • reactive oxygen species
  • retina
  • RGC
  • sodium channel

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Cortically-evoked movement in humans reflects history of prior executions, not plan for upcoming movement
  • Neuronally-derived soluble Abeta evokes cell-wide astrocytic calcium dysregulation in absence of amyloid plaques in vivo
  • Effect of aging and a dual orexin receptor antagonist on sleep architecture and NREM oscillations including a REM Behavior Disorder phenotype in the PS19 mouse model of tauopathy
Show more Research Articles

Cellular/Molecular

  • Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαq and Gαs Activate the Caenorhabditis elegans Egg-Laying Muscles
  • The SphK1/S1P Axis Regulates Synaptic Vesicle Endocytosis via TRPC5 Channels
  • Ogt deficiency induces abnormal cerebellar function and behavioral deficits of adult mice through modulating RhoA/ROCK signaling
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.