Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

The Forces Generated by Agonist Muscles during Isometric Contractions Arise from Motor Unit Synergies

Alessandro Del Vecchio, Carina Marconi Germer, Thomas M. Kinfe, Stefano Nuccio, François Hug, Bjoern Eskofier, Dario Farina and Roger M. Enoka
Journal of Neuroscience 19 April 2023, 43 (16) 2860-2873; DOI: https://doi.org/10.1523/JNEUROSCI.1265-22.2023
Alessandro Del Vecchio
1Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, 91052 Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alessandro Del Vecchio
Carina Marconi Germer
2Department of Bioengineering, Federal University of Pernambuco, CEP 50670-901 Recife, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas M. Kinfe
3Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University, 91052 Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefano Nuccio
4Department Human Movement Science, University of Rome Foro Italico, 00185 Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stefano Nuccio
François Hug
5Le Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, 06103 Nice, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for François Hug
Bjoern Eskofier
1Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, 91052 Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dario Farina
6Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dario Farina
Roger M. Enoka
7Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado CO 80309
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (16)
Journal of Neuroscience
Vol. 43, Issue 16
19 Apr 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Forces Generated by Agonist Muscles during Isometric Contractions Arise from Motor Unit Synergies
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
The Forces Generated by Agonist Muscles during Isometric Contractions Arise from Motor Unit Synergies
Alessandro Del Vecchio, Carina Marconi Germer, Thomas M. Kinfe, Stefano Nuccio, François Hug, Bjoern Eskofier, Dario Farina, Roger M. Enoka
Journal of Neuroscience 19 April 2023, 43 (16) 2860-2873; DOI: 10.1523/JNEUROSCI.1265-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The Forces Generated by Agonist Muscles during Isometric Contractions Arise from Motor Unit Synergies
Alessandro Del Vecchio, Carina Marconi Germer, Thomas M. Kinfe, Stefano Nuccio, François Hug, Bjoern Eskofier, Dario Farina, Roger M. Enoka
Journal of Neuroscience 19 April 2023, 43 (16) 2860-2873; DOI: 10.1523/JNEUROSCI.1265-22.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • common synaptic input
  • motor neurons
  • motor unit
  • muscle synergies

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Hyperexcitability in the olfactory bulb and impaired fine odor discrimination in the Fmr1 KO mouse model of fragile X syndrome
  • Cortical synchrony and information flow during transition from wakefulness to light non-rapid eye movement sleep
  • NaX channel is a physiological [Na+] detector in oxytocin and vasopressin releasing magnocellular neurosecretory cells of the rat supraoptic nucleus
Show more Research Articles

Systems/Circuits

  • Cortical synchrony and information flow during transition from wakefulness to light non-rapid eye movement sleep
  • Evidence that ultrafast non-quantal transmission underlies synchronized vestibular action potential generation
  • Nfia is Critical for AII Amacrine Cell Production: Selective Bipolar Cell Dependencies and Diminished ERG
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.