Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System

Samson Chota, Rufin VanRullen and Rasa Gulbinaite
Journal of Neuroscience 26 April 2023, 43 (17) 3107-3119; DOI: https://doi.org/10.1523/JNEUROSCI.1758-22.2023
Samson Chota
1Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, 31052, France
3Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, 3584 CS, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rufin VanRullen
1Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, 31052, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rufin VanRullen
Rasa Gulbinaite
2Netherlands Institute for Neuroscience, Amsterdam, 1105 BA, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Both passive tactile stimulation and motor actions result in dynamic changes in beta band (15–30 Hz Hz) oscillations over somatosensory cortex. Similar to alpha band (8–12 Hz) power decrease in the visual system, beta band power also decreases following stimulation of the somatosensory system. This relative suppression of α and β oscillations is generally interpreted as an increase in cortical excitability. Here, next to traditional single-pulse stimuli, we used a random intensity continuous right index finger tactile stimulation (white noise), which enabled us to uncover an impulse response function of the somatosensory system. Contrary to previous findings, we demonstrate a burst-like initial increase rather than decrease of beta activity following white noise stimulation (human participants, N = 18, 8 female). These β bursts, on average, lasted for 3 cycles, and their frequency was correlated with resonant frequency of somatosensory cortex, as measured by a multifrequency steady-state somatosensory evoked potential paradigm. Furthermore, beta band bursts shared spectro-temporal characteristics with evoked and resting-state β oscillations. Together, our findings not only reveal a novel oscillatory signature of somatosensory processing that mimics the previously reported visual impulse response functions, but also point to a common oscillatory generator underlying spontaneous β bursts in the absence of tactile stimulation and phase-locked β bursts following stimulation, the frequency of which is determined by the resonance properties of the somatosensory system.

SIGNIFICANCE STATEMENT The investigation of the transient nature of oscillations has gained great popularity in recent years. The findings of bursting activity, rather than sustained oscillations in the beta band, have provided important insights into its role in movement planning, working memory, inhibition, and reactivation of neural ensembles. In this study, we show that also in response to tactile stimulation the somatosensory system responds with ∼3 cycle oscillatory beta band bursts, whose spectro-temporal characteristics are shared with evoked and resting-state beta band oscillatory signatures of the somatosensory system. As similar bursts have been observed in the visual domain, these oscillatory signatures might reflect an important supramodal mechanism in sensory processing.

  • beta bursts
  • beta oscillations
  • impulse response function
  • neural resonance
  • perceptual echoes
  • SSSEP

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (17)
Journal of Neuroscience
Vol. 43, Issue 17
26 Apr 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System
Samson Chota, Rufin VanRullen, Rasa Gulbinaite
Journal of Neuroscience 26 April 2023, 43 (17) 3107-3119; DOI: 10.1523/JNEUROSCI.1758-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System
Samson Chota, Rufin VanRullen, Rasa Gulbinaite
Journal of Neuroscience 26 April 2023, 43 (17) 3107-3119; DOI: 10.1523/JNEUROSCI.1758-22.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • beta bursts
  • beta oscillations
  • impulse response function
  • neural resonance
  • perceptual echoes
  • SSSEP

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Basolateral amygdala astrocytes are engaged by the acquisition and expression of a contextual fear memory
  • Restoration of sleep and circadian behavior by autophagy modulation in Huntington’s disease
  • The stria vascularis in mice and humans is an early site of age-related cochlear degeneration, macrophage dysfunction, and inflammation
Show more Research Articles

Behavioral/Cognitive

  • Learning a Model of Shape Selectivity in V4 Cells Reveals Shape Encoding Mechanisms in the Brain
  • A Fluid Self-Concept: How the Brain Maintains Coherence and Positivity across an Interconnected Self-Concept While Incorporating Social Feedback
  • A Texture Statistics Encoding Model Reveals Hierarchical Feature Selectivity across Human Visual Cortex
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.