Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Cellular/Molecular

Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons

John Hongyu Meng, Benjamin Schuman, Bernardo Rudy and Xiao-Jing Wang
Journal of Neuroscience 3 May 2023, 43 (18) 3202-3218; DOI: https://doi.org/10.1523/JNEUROSCI.1876-22.2023
John Hongyu Meng
1Center for Neural Science, New York University, New York, New York 10003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John Hongyu Meng
Benjamin Schuman
2Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York 10016
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernardo Rudy
2Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York 10016
3Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University, New York, New York 10016
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao-Jing Wang
1Center for Neural Science, New York University, New York, New York 10003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xiao-Jing Wang
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Published eLetters

Guidelines

As a forum for professional feedback, submissions of letters are open to all. You do not need to be a subscriber. To avoid redundancy, we urge you to read other people's letters before submitting your own. Name, current appointment, place of work, and email address are required to send a letter, and will be published with your review. We also require that you declare any competing financial interests. Unprofessional submissions will not be considered or responded to.

Submit a Response to This Article
Compose eLetter

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Vertical Tabs

Jump to comment:

No eLetters have been published for this article.
Back to top

In this issue

The Journal of Neuroscience: 43 (18)
Journal of Neuroscience
Vol. 43, Issue 18
3 May 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
John Hongyu Meng, Benjamin Schuman, Bernardo Rudy, Xiao-Jing Wang
Journal of Neuroscience 3 May 2023, 43 (18) 3202-3218; DOI: 10.1523/JNEUROSCI.1876-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
John Hongyu Meng, Benjamin Schuman, Bernardo Rudy, Xiao-Jing Wang
Journal of Neuroscience 3 May 2023, 43 (18) 3202-3218; DOI: 10.1523/JNEUROSCI.1876-22.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • electrophysiology
  • interneurons
  • irregularity
  • layer 1
  • single-cell modeling
  • VIP cells

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Dual regulation of spine-specific and synapse-to-nucleus signaling by PKCδ during plasticity
  • Cholinergic stimulation modulates the functional composition of CA3 cell types in the hippocampus
  • Behavioral state-dependent modulation of prefrontal cortex activity by respiration
Show more Research Articles

Cellular/Molecular

  • Dual regulation of spine-specific and synapse-to-nucleus signaling by PKCδ during plasticity
  • Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig
  • Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαq and Gαs Activate the Caenorhabditis elegans Egg-Laying Muscles
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.