Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals

Ruggero Basanisi, Kevin Marche, Etienne Combrisson, Paul Apicella and Andrea Brovelli
Journal of Neuroscience 3 May 2023, 43 (18) 3339-3352; DOI: https://doi.org/10.1523/JNEUROSCI.0952-22.2023
Ruggero Basanisi
1Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin Marche
1Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
2Wellcome Center for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX3 9DU, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Etienne Combrisson
1Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Apicella
1Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Paul Apicella
Andrea Brovelli
1Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andrea Brovelli
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. RPE signals are encoded in the neural activity of multiple brain areas, such as midbrain dopaminergic neurons, prefrontal cortex, and striatum. However, it remains unclear how these signals are expressed through anatomically and functionally distinct subregions of the striatum. In the current study, we examined to which extent RPE signals are represented across different striatal regions. To do so, we recorded local field potentials (LFPs) in sensorimotor, associative, and limbic striatal territories of two male rhesus monkeys performing a free-choice probabilistic learning task. The trial-by-trial evolution of RPE during task performance was estimated using a reinforcement learning model fitted on monkeys' choice behavior. Overall, we found that changes in beta band oscillations (15–35 Hz), after the outcome of the animal's choice, are consistent with RPE encoding. Moreover, we provide evidence that the signals related to RPE are more strongly represented in the ventral (limbic) than dorsal (sensorimotor and associative) part of the striatum. To conclude, our results suggest a relationship between striatal beta oscillations and the evaluation of outcomes based on RPE signals and highlight a major contribution of the ventral striatum to the updating of learning processes.

SIGNIFICANCE STATEMENT Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. Current models suggest that RPE signals are encoded in the neural activity of multiple brain areas, including the midbrain dopaminergic neurons, prefrontal cortex and striatum. However, it remains elusive whether RPEs recruit anatomically and functionally distinct subregions of the striatum. Our study provides evidence that RPE-related modulations in local field potential (LFP) power are dominant in the striatum. In particular, they are stronger in the rostro-ventral rather than the caudo-dorsal striatum. Our findings contribute to a better understanding of the role of striatal territories in reward-based learning and may be relevant for neuropsychiatric and neurologic diseases that affect striatal circuits.

  • learning
  • LFP
  • mutual information
  • rewards
  • striatum

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (18)
Journal of Neuroscience
Vol. 43, Issue 18
3 May 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals
Ruggero Basanisi, Kevin Marche, Etienne Combrisson, Paul Apicella, Andrea Brovelli
Journal of Neuroscience 3 May 2023, 43 (18) 3339-3352; DOI: 10.1523/JNEUROSCI.0952-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals
Ruggero Basanisi, Kevin Marche, Etienne Combrisson, Paul Apicella, Andrea Brovelli
Journal of Neuroscience 3 May 2023, 43 (18) 3339-3352; DOI: 10.1523/JNEUROSCI.0952-22.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • learning
  • LFP
  • mutual information
  • rewards
  • striatum

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • ALS-associated KIF5A mutation causes locomotor deficits associated with cytoplasmic inclusions, alterations of neuromuscular junctions and motor neuron loss
  • Anatomical diversity of the adult corticospinal tract revealed by single cell transcriptional profiling
  • Expectation cues and false percepts generate stimulus-specific activity in distinct layers of the early visual cortex Laminar profile of visual false percepts
Show more Research Articles

Behavioral/Cognitive

  • Prostaglandin E2 induces long-lasting inhibition of noradrenergic neurons in the locus coeruleus and moderates the behavioral response to stressors
  • Detection of spatially-localized sounds is robust to saccades and concurrent eye movement-related eardrum oscillations (EMREOs)
  • Rewarding capacity of optogenetically activating a giant GABAergic central-brain interneuron in larval Drosophila
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.