Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Domain-General and Domain-Specific Electrophysiological Markers of Cognitive Distance Coding for What, Where, and When Memory Retrieval

Sang-Eon Park, Jeonghyun Lee and Sang Ah Lee
Journal of Neuroscience 7 June 2023, 43 (23) 4304-4314; DOI: https://doi.org/10.1523/JNEUROSCI.0261-23.2023
Sang-Eon Park
1Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea
2Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeonghyun Lee
1Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sang Ah Lee
1Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sang Ah Lee
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The what, where, and when components of episodic memory can be differentiated based on their distinctive domain-specific underlying neural correlates. However, recent studies have proposed that a common neural mechanism of conceptual mapping may be involved in the coding of cognitive distance across all domains. In this study, we provide evidence that both domain-specific and domain-general processes occur simultaneously during memory retrieval by identifying distinctive and common neural representations for mapping what (i.e., semantic distance), where (i.e., spatial distance), and when (i.e., temporal distance) using scalp EEG from 47 healthy participants (age 21-30, 26 male and 21 female). First, we found that all three components commonly showed a positive correlation between cognitive distance and slow theta power (2.5-5 Hz) in parietal channels. Meanwhile, fast theta power (5-8.5 Hz) specifically represented spatial and temporal distance in occipital and parietal channels, respectively. Additionally, we identified a unique correlate of temporal distance coding in frontal/parietal slow theta power during the early phase of retrieval. All of the above neural markers of cognitive mapping, both domain-general and specific, were associated with individual differences in what, where, and when memory accuracy.

SIGNIFICANCE STATEMENT The Cognitive Map Theory was originally founded to explain how we remember and organize the immense amount of spatial information that we face when we navigate. However, memory research has recently trended in the direction of emphasizing the generalizability of cognitive mapping mechanisms to information in any domain, represented as distances in an abstract conceptual space. In a single study, we show that both common and unique neural coding of semantic distance (i.e., what), spatial distance (i.e., where), and temporal distance (i.e., when) simultaneously support episodic memory retrieval. Our results suggest that our ability to accurately distinguish between memories is achieved through an integration of domain-specific and domain-general neurocognitive mechanisms that work in parallel.

  • cognitive map
  • episodic memory
  • semantic distance
  • spatial distance
  • temporal distance

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (23)
Journal of Neuroscience
Vol. 43, Issue 23
7 Jun 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Domain-General and Domain-Specific Electrophysiological Markers of Cognitive Distance Coding for What, Where, and When Memory Retrieval
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Domain-General and Domain-Specific Electrophysiological Markers of Cognitive Distance Coding for What, Where, and When Memory Retrieval
Sang-Eon Park, Jeonghyun Lee, Sang Ah Lee
Journal of Neuroscience 7 June 2023, 43 (23) 4304-4314; DOI: 10.1523/JNEUROSCI.0261-23.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Domain-General and Domain-Specific Electrophysiological Markers of Cognitive Distance Coding for What, Where, and When Memory Retrieval
Sang-Eon Park, Jeonghyun Lee, Sang Ah Lee
Journal of Neuroscience 7 June 2023, 43 (23) 4304-4314; DOI: 10.1523/JNEUROSCI.0261-23.2023
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • cognitive map
  • episodic memory
  • semantic distance
  • spatial distance
  • temporal distance

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Optogenetics reveals roles for supporting cells in force transmission to and from outer hair cells in the mouse cochlea
  • Pre-saccadic neural enhancements in marmoset area MT
  • Interareal synaptic inputs underlying whisking-related activity in the primary somatosensory barrel cortex
Show more Research Articles

Behavioral/Cognitive

  • Featural representation and internal noise underlie the eccentricity effect in contrast sensitivity
  • Dissociative effects of age on neural differentiation at the category and item level
  • The Representation of Observed Actions at the Subordinate, Basic, and Superordinate Level
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.