Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Two Ascending Thermosensory Pathways from the Lateral Parabrachial Nucleus That Mediate Behavioral and Autonomous Thermoregulation

Takaki Yahiro, Naoya Kataoka and Kazuhiro Nakamura
Journal of Neuroscience 12 July 2023, 43 (28) 5221-5240; DOI: https://doi.org/10.1523/JNEUROSCI.0643-23.2023
Takaki Yahiro
1Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Takaki Yahiro
Naoya Kataoka
1Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
2Nagoya University Institute for Advanced Research, Nagoya, 464-8601, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Naoya Kataoka
Kazuhiro Nakamura
1Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kazuhiro Nakamura
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Thermoregulatory behavior in homeothermic animals is an innate behavior to defend body core temperature from environmental thermal challenges in coordination with autonomous thermoregulatory responses. In contrast to the progress in understanding the central mechanisms of autonomous thermoregulation, those of behavioral thermoregulation remain poorly understood. We have previously shown that the lateral parabrachial nucleus (LPB) mediates cutaneous thermosensory afferent signaling for thermoregulation. To understand the thermosensory neural network for behavioral thermoregulation, in the present study, we investigated the roles of ascending thermosensory pathways from the LPB in avoidance behavior from innocuous heat and cold in male rats. Neuronal tracing revealed two segregated groups of LPB neurons projecting to the median preoptic nucleus (MnPO), a thermoregulatory center (LPB→MnPO neurons), and those projecting to the central amygdaloid nucleus (CeA), a limbic emotion center (LPB→CeA neurons). While LPB→MnPO neurons include separate subgroups activated by heat or cold exposure of rats, LPB→CeA neurons were only activated by cold exposure. By selectively inhibiting LPB→MnPO or LPB→CeA neurons using tetanus toxin light chain or chemogenetic or optogenetic techniques, we found that LPB→MnPO transmission mediates heat avoidance, whereas LPB→CeA transmission contributes to cold avoidance. In vivo electrophysiological experiments showed that skin cooling-evoked thermogenesis in brown adipose tissue requires not only LPB→MnPO neurons but also LPB→CeA neurons, providing a novel insight into the central mechanism of autonomous thermoregulation. Our findings reveal an important framework of central thermosensory afferent pathways to coordinate behavioral and autonomous thermoregulation and to generate the emotions of thermal comfort and discomfort that drive thermoregulatory behavior.

SIGNIFICANCE STATEMENT Coordination of behavioral and autonomous thermoregulation is important for maintaining thermal homeostasis in homeothermic animals. However, the central mechanism of thermoregulatory behaviors remains poorly understood. We have previously shown that the lateral parabrachial nucleus (LPB) mediates ascending thermosensory signaling that drives thermoregulatory behavior. In this study, we found that one pathway from the LPB to the median preoptic nucleus mediates heat avoidance, whereas the other pathway from the LPB to the central amygdaloid nucleus is required for cold avoidance. Surprisingly, both pathways are required for skin cooling-evoked thermogenesis in brown adipose tissue, an autonomous thermoregulatory response. This study provides a central thermosensory network that coordinates behavioral and autonomous thermoregulation and generates thermal comfort and discomfort that drive thermoregulatory behavior.

  • amygdala
  • autonomic
  • behavior
  • lateral parabrachial nucleus
  • preoptic area
  • thermoregulation

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (28)
Journal of Neuroscience
Vol. 43, Issue 28
12 Jul 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Two Ascending Thermosensory Pathways from the Lateral Parabrachial Nucleus That Mediate Behavioral and Autonomous Thermoregulation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Two Ascending Thermosensory Pathways from the Lateral Parabrachial Nucleus That Mediate Behavioral and Autonomous Thermoregulation
Takaki Yahiro, Naoya Kataoka, Kazuhiro Nakamura
Journal of Neuroscience 12 July 2023, 43 (28) 5221-5240; DOI: 10.1523/JNEUROSCI.0643-23.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Two Ascending Thermosensory Pathways from the Lateral Parabrachial Nucleus That Mediate Behavioral and Autonomous Thermoregulation
Takaki Yahiro, Naoya Kataoka, Kazuhiro Nakamura
Journal of Neuroscience 12 July 2023, 43 (28) 5221-5240; DOI: 10.1523/JNEUROSCI.0643-23.2023
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • amygdala
  • autonomic
  • behavior
  • lateral parabrachial nucleus
  • preoptic area
  • thermoregulation

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Category-selective representation of relationships in visual cortex
  • Auditory corticofugal neurons transmit auditory and non-auditory information during behavior
  • Phosphorylation of RPT6 controls its ability to bind DNA and regulate gene expression in the hippocampus of male rats during memory formation
Show more Research Articles

Systems/Circuits

  • Auditory corticofugal neurons transmit auditory and non-auditory information during behavior
  • Effective Regulation of Auditory Processing by Parvalbumin Interneurons in the Tail of the Striatum
  • A Developmental Switch in Cholinergic Mechanisms of Modulation in the Medial Nucleus of the Trapezoid Body
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.