Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Development/Plasticity/Repair

CDK5/p35-Dependent Microtubule Reorganization Contributes to Homeostatic Shortening of the Axon Initial Segment

Israt Jahan, Ryota Adachi, Ryo Egawa, Haruka Nomura and Hiroshi Kuba
Journal of Neuroscience 18 January 2023, 43 (3) 359-372; DOI: https://doi.org/10.1523/JNEUROSCI.0917-22.2022
Israt Jahan
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryota Adachi
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryo Egawa
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haruka Nomura
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Kuba
Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hiroshi Kuba
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Published eLetters

Guidelines

As a forum for professional feedback, submissions of letters are open to all. You do not need to be a subscriber. To avoid redundancy, we urge you to read other people's letters before submitting your own. Name, current appointment, place of work, and email address are required to send a letter, and will be published with your review. We also require that you declare any competing financial interests. Unprofessional submissions will not be considered or responded to.

Submit a Response to This Article
Compose eLetter

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

Vertical Tabs

Jump to comment:

No eLetters have been published for this article.
Back to top

In this issue

The Journal of Neuroscience: 43 (3)
Journal of Neuroscience
Vol. 43, Issue 3
18 Jan 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
CDK5/p35-Dependent Microtubule Reorganization Contributes to Homeostatic Shortening of the Axon Initial Segment
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
CDK5/p35-Dependent Microtubule Reorganization Contributes to Homeostatic Shortening of the Axon Initial Segment
Israt Jahan, Ryota Adachi, Ryo Egawa, Haruka Nomura, Hiroshi Kuba
Journal of Neuroscience 18 January 2023, 43 (3) 359-372; DOI: 10.1523/JNEUROSCI.0917-22.2022

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
CDK5/p35-Dependent Microtubule Reorganization Contributes to Homeostatic Shortening of the Axon Initial Segment
Israt Jahan, Ryota Adachi, Ryo Egawa, Haruka Nomura, Hiroshi Kuba
Journal of Neuroscience 18 January 2023, 43 (3) 359-372; DOI: 10.1523/JNEUROSCI.0917-22.2022
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • axon initial segment
  • Ca2+
  • CDK5
  • microtubules
  • p35
  • plasticity

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
  • Neural index of reinforcement learning predicts improved stimulus-response retention under high working memory load
  • Activity-dependent Nr4a2 induction modulates synaptic expression of AMPA receptors and plasticity via a Ca2+/CRTC1/CREB pathway
Show more Research Articles

Development/Plasticity/Repair

  • Cbln1 Directs Axon Targeting by Corticospinal Neurons Specifically toward Thoraco-Lumbar Spinal Cord
  • Loss of Motor Cortical Inputs to the Red Nucleus after CNS Disorders in Nonhuman Primates
  • Astrocytes Transplanted during Early Postnatal Development Integrate, Mature, and Survive Long Term in Mouse Cortex
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.