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Humans can label and categorize objects in a visual scene with high accuracy and speed, a capacity well characterized with
studies using static images. However, motion is another cue that could be used by the visual system to classify objects. To
determine how motion-defined object category information is processed by the brain in the absence of luminance-defined
form information, we created a novel stimulus set of “object kinematograms” to isolate motion-defined signals from other
sources of visual information. Object kinematograms were generated by extracting motion information from videos of 6
object categories and applying the motion to limited-lifetime random dot patterns. Using functional magnetic resonance
imaging (fMRI) (n= 15, 40% women), we investigated whether category information from the object kinematograms could be
decoded within the occipitotemporal and parietal cortex and evaluated whether the information overlapped with category
responses to static images from the original videos. We decoded object category for both stimulus formats in all higher-order
regions of interest (ROIs). More posterior occipitotemporal and ventral regions showed higher accuracy in the static condi-
tion, while more anterior occipitotemporal and dorsal regions showed higher accuracy in the dynamic condition. Further,
decoding across the two stimulus formats was possible in all regions. These results demonstrate that motion cues can elicit
widespread and robust category responses on par with those elicited by static luminance cues, even in ventral regions of vis-
ual cortex that have traditionally been associated with primarily image-defined form processing.
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Significance Statement

Much research on visual object recognition has focused on recognizing objects in static images. However, motion is a rich
source of information that humans might also use to categorize objects. Here, we present the first study to compare neural
representations of several animate and inanimate objects when category information is presented in two formats: static cues
or isolated dynamic motion cues. Our study shows that, while higher-order brain regions differentially process object catego-
ries depending on format, they also contain robust, abstract category representations that generalize across format. These
results expand our previous understanding of motion-derived animate and inanimate object category processing and provide
useful tools for future research on object category processing driven by multiple sources of visual information.

Introduction
Humans can categorize objects with striking speed and accuracy.
Previous research on the neural basis of visual object recognition

has focused on the processing of static features from images
along the ventral hierarchy of the primate brain (for review, see
Peissig and Tarr, 2007). However, real-world scenes are not
static. Indeed, motion cues can contain category-relevant infor-
mation that humans use to make judgments about objects.
Behavioral studies using point-light displays (PLDs) (Johansson,
1973, 1976) have established that, even with the impoverished
motion information available in PLDs, humans can quickly per-
ceive a moving person, identify the action being performed, and
even determine the actor’s age, gender, and affect (e.g., Cutting
and Kozlowski, 1977; Barclay et al., 1978; Bassili, 1978; Dittrich
et al., 1996).

Biological motion research has primarily focused on the per-
ception of human motion because of the significant role that it
plays in our social lives. However, our sensitivity to information
in motion cues is not restricted to perceiving humans. Humans
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can infer animacy and complex social relations from the move-
ments of basic geometric shapes (Heider and Simmel, 1944;
Scholl and Gao, 2013; Schultz and Bülthoff, 2013); and can rec-
ognize animal categories, such as chickens, dogs, horses, and cats
in PLDs (Mitkin and Pavlova, 1990; Mather and West, 1993;
Pinto, 1994; Pavlova et al., 2001; Pinto and Shiffrar, 2009).

Investigations of the neural underpinnings of object catego-
rization from motion have identified multiple regions sensitive
to lower- and higher-order motion information. The human
middle temporal area (hMT1/V5) has been identified as a
motion selective region (Zeki et al., 1991; Watson et al., 1993;
Tootell et al., 1995). The posterior superior temporal sulcus has
been shown to track animacy signals in motion cues from sim-
ple shapes and to process dynamic movements of human faces
and bodies (Pavlova et al., 2004; Hirai and Hiraki, 2006; Pitcher
et al., 2011; Schultz and Bülthoff, 2013). Neuropsychological
studies have suggested that parietal regions are involved in the
integration of motion and form information during structure-
from-motion identification tasks (Schenk and Zihl, 1997).

Despite extensive research into neural substrates of human
motion processing (Giese, 2013), there have been comparatively
few studies that have investigated how the motion of nonhuman
object categories is processed in the brain. Previous studies sug-
gest preferential processing of human motion over that of one or
two other classes (e.g., mammals or tools) in regions in lateral
occipito-temporal cortex, including the posterior superior tem-
poral sulcus (Papeo et al., 2017), hMT1 (Kaiser et al., 2012), and
fusiform gyrus (Grossman and Blake, 2002), along with the infe-
rior parietal lobe, inferior frontal gyrus (Saygin et al., 2004), the
posterior and anterior cingulate cortices, and the amygdala
(Bonda et al., 1996; Ptito et al., 2003).

The limited neuroimaging studies that have directly com-
pared motion- and image-derived object representations have
focused on human (or monkey) faces and bodies (Pitcher et al.,
2011; Furl et al., 2012; Hafri et al., 2017) or have only compared
humans with tools (Beauchamp et al., 2003). Furthermore,
these studies (except Beauchamp et al., 2003), have used videos
containing both static and dynamic cues as their dynamic con-
dition and therefore could not carefully separate the contribu-
tions of motion- and image-information. Thus, a systematic
comparison of several object category representations driven by
isolated motion and static cues has yet to be undertaken.

Here, we devised a novel method to generate stimuli that
only contained motion cues by extracting motion signals from
videos of objects and simulating object movements using flow
fields of moving dots. Borrowing the term from random dot
kinematogram stimuli used to study motion perception, we
named our stimuli “object kinematograms” (Cavanagh and
Mather, 1989). We first demonstrated that humans can recog-
nize a wide variety of animate and inanimate objects in our
dynamic stimuli. We then used these stimuli, along with static
images, in an fMRI study to compare object category repre-
sentations derived from dynamic and static cues in occipito-
temporal and parietal regions across visual cortex.

Materials and Methods
Stimuli
Object kinematogram creation pipeline
The process of generating the object kinematograms and their corre-
sponding static images is depicted in Figure 1A. Eight categories were
selected to sample a wide range of animate and inanimate object catego-
ries: human, nonhuman mammal, bird, reptile, vehicle, tool, pendulum/
swing, and ball. We searched for videos of objects performing a wide

range of movements. Video clips were downloaded from various sources
on the Internet or shot with in-house equipment in accordance with the
following criteria: (1) contained a single moving object, (2) contained
the object in frame without occlusion, (3) shot without camera move-
ment (no zooming, panning, tracking), (4) contained no movement in
the background, and (5) lasted at least 3 s.

We used in-house MATLAB code, the Psychtoolbox extension, and
in-house Python code to generate moving dot patterns that followed the
movement of the objects in the videos. To do this, first, all videos were
trimmed to 3 s, cropped with a 3:2 x/y aspect ratio to center the object,
and resized to 720� 460 pixel resolution. Videos with 30 frames per sec-
ond were then upsampled so that all videos had a frame rate of 60 fps.
The local, frame-by-frame motion of the objects in each video in x and y
directions was then extracted using the Farnebäck optical flow algorithm
(Farnebäck, 2003).

Next, object movements extracted from the full videos were pro-
jected on moving dot patterns. To create the moving dot stimuli, 2500
white dots (2 pixel diameter) were randomly initialized on a gray back-
ground (720� 460 pixels). Dots that fell within pixels with nonzero
motion vector values were moved in the direction and magnitude speci-
fied by the extracted motion matrix in the next frame. The lifetime
(number of contiguous frames of movement) of any dot was randomly
sampled from a uniform distribution between 1 and 17 frames. The life-
time value decreased on every frame. If the lifetime of a dot reached 0 or
if they reached the boundaries of the frame, they were reinitialized to a
random position with a lifetime of 17 frames.

The number of dots for a given frame and their lifetime was set to
mitigate the formation of dot clusters that could induce perception of an
edge in individual frames of the video. Individual frames of the videos
were qualitatively examined to see whether they induced a perception of
any kind of edge, including those related to the object form as well as
spurious edges (see example in Extended Data Fig. 1-1). Videos that pro-
duced such artifacts were removed from the stimulus set. For the fMRI
experiment, these moving dot videos were rendered live for each trial so
that the dot initializations were always random.

Object kinematogram validation experiment
To ensure that the stimuli contained clear category information, we con-
ducted an online experiment; 430 participants (223 women, aged 18-65
years) were recruited on Amazon Mechanical Turk to perform an object
categorization task on the dynamic stimuli. Participants each performed
either 10 or 11 trials. For each trial, participants were asked three ques-
tions about the object in a looped video: (1) whether the object in the
video was of an animal or non-animal, (2) which of 8 listed categories
the object belonged to, and (3) whether they could label the object. If
subjects responded “yes” for the third question, they were required to
type the label in a response text box. Each of the three questions con-
tained an “I don’t know” option. Subjects had to answer all three ques-
tions to complete each trial.

Overall, subjects categorized objects based on their motion in the
moving dot stimuli with an average accuracy of 76% (202 total videos).
The three animate (human, mammal, reptile) and three inanimate (tool,
ball, pendulum/swing) categories with the highest accuracy were used
for the fMRI experiment. For each category, the six videos with the high-
est accuracy were selected (mean accuracy= 96%).

The overall “motion energy” of each video was calculated by averag-
ing the motion vectors across all pixels in all frames. The average motion
energies for the 6 videos in each category were entered into pairwise
two-sample heteroscedastic t test comparisons to ensure that there were
no significant differences between categories (all uncorrected
p values. 0.05; for mean and SDs per category, see Table 1).

After the object kinematogram stimulus set was finalized, the static
image stimulus set was generated by randomly selecting three frames of
the full form video from which the moving dot stimulus was created.
The frame with the object in clearest view was selected and further proc-
essed to extract the object from the frame. For the fMRI experiment, the
isolated object was pasted onto a background of 2500 randomly initial-
ized white dots on a gray background to mimic a frame of the dynamic
moving dot stimuli (Fig. 1A).
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fMRI experiment
Participants
Fifteen healthy human subjects (6 female, age range 19-42 years) with
normal or corrected to normal vision were recruited for the fMRI experi-
ment. Based on effect sizes from other studies using multivariate decod-
ing (Cohen’s d values. 7.3 for cross-classification of fMRI responses to
images across position and size in ROIs in lateral and ventral occipito-
temporal cortex; Vaziri-Pashkam and Xu, 2019), we conducted a power
analysis and concluded that a sample size of 15 would be sufficient to
detect an effect size of �0.9 with a power of 0.8. Participants were
brought in for a 2 h fMRI session that included the main experiment
and three localizer tasks. Before entering the scanner, all participants
practiced the tasks for the main experiment and localizer runs and
underwent a short behavioral task to familiarize themselves with the
stimuli. All subjects provided informed consent and received compensa-
tion for their participation. The experiments were approved by the
National Institutes of Health ethics committee.

Training session
The independent norming study performed with mTurk demonstrated
that people can recognize the objects in these stimuli with high accuracy
after minimal instruction. However, to avoid introducing noise because
of intersubject variability in recognition of the dynamic stimuli or poten-
tially slower recognition of the dynamic stimuli in the first runs of the
session, participants performed a training session before entering the
scanner. During the training session, they familiarized themselves with

the 36 dynamic stimuli and were subsequently tested to ensure accurate
recognition. Each video was shown on loop until subjects could verbally
report which of the 6 categories the object belonged to. If the subject
categorized the object correctly, the experimenter advanced to the next
stimulus; incorrect categorizations were verbally corrected by the experi-
menter. After all stimuli had been verbally categorized, subjects under-
went a testing session. In each trial, a random video was shown once
without looping, followed by a gray screen with six category labels
placed in a circle around the center of the screen. Subjects were
instructed to categorize the object in the video by clicking on the
corresponding category label. No feedback was provided during the
testing session. If a subject performed above 90% accuracy, they
continued on to the fMRI experiment. The training and testing ses-
sion took no longer than 15min. Subjects required little to no cor-
rection during the training session and performed with an average
of 99% accuracy in the test session on the first iteration (n = 13, data
for 2 subjects were lost because of technical problems).

MRI methods
MRI data were collected from a Siemens MAGNETOM Prisma scanner
at 3 Tesla equipped with a 32-channel head coil. Subjects viewed the
display on a BOLDscreen 32 LCD (Cambridge Research Systems,
60Hz refresh rate, 1600� 900 resolution, at an estimated distance of
187 cm) through a mirror mounted on the head coil. The stimuli were
presented using a Dell laptop with MATLAB and Psychtoolbox exten-
sions (Brainard, 1997; Kleiner et al., 2007).

For each participant, a high-resolution (1.0� 1.0� 1.0 mm) T1-
weighted anatomic scan was obtained for surface reconstruction. All
functional scans were collected with a T2*-weighted single-shot, multiple
gradient-EPI sequence (Kundu et al., 2012) with a multiband accelera-
tion factor of 2 slices/pulse; 50 slices (3 mm thick, 3� 3 mm2 in-plane
resolution) were collected to cover the whole brain (TR 2 s, TE= 12ms,
28.28ms, 44.56ms, flip angle = 70°, FOV=216 mm).

Table 1. Motion energies of dynamic stimuli per object category

Motion energy Humans Mammals Reptiles Tools Pendulums Balls

Mean 0.1298 0.2191 0.1016 0.3441 0.1303 0.1327
SD 0.0364 0.1836 0.0520 0.2536 0.1403 0.0506

Figure 1. Schematic depicting the stimulus generation process and regions of interest (ROIs) of a single example subject generated by the group-constrained single-subject method. A,
General pipeline for generating the object kinematogram stimuli (left) and static image stimuli (right). “T” indicates the time between two frames of the video as the extracted motion informa-
tion is calculated with pairs of frames. Kinematograms that induced perception of form in a static frame were eliminated (see Extended Data Fig. 1-1). B, ROIs for one example subject. Pink
represents the supramarginal area (SMG). Dark green represents the infIPS. Light green represents the LO. Yellow represents the EBA. Dark blue represents the biological motion-related lateral
occipito-temporal area (LOT-biomotion). Teal represents the pFS. Purple represents primary visual cortex (V1). As an STS region could not be reliably localized using the group-constrained sin-
gle-subject method, we also defined LOT and STS regions (LOT-atlas and STS-atlas) from a probabilistic atlas (shown in Extended Data Fig. 1-2). The overlap of the SMG region with meta-ana-
lytic activation maps for “action observation” and “tools” from Neurosynth (Yarkoni et al., 2011) is shown in Extended Data Figure 1-3.
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Experimental design
Main experiment. The main task of the experiment included 6 cate-

gories (human, mammal, reptile, tool, pendulum/swing, and ball) and 2
stimulus conditions: dynamic (object kinematograms) and static (object
images pasted on dot background). Both dynamic and static stimuli
were presented at the same size and location (subtending 9.6� � 4.8� vis-
ual angle). We used a block design to present alternating blocks of
dynamic and static stimuli while also alternating between animate and
inanimate blocks. The order of the 6 categories and the two formats
were counterbalanced within and across runs. Four different counterbal-
ancing designs were created, and each subject was randomly assigned
one of the designs.

Each run contained 12 condition blocks, one for each condition (2
formats � 6 categories), began with an initial fixation block of 8 s, and
ended with a final fixation of 12 s. Each condition block began with an
8 s fixation period in which a red fixation dot (5 pixels in radius) was
shown on a gray background. The fixation period was then followed by
the stimulus presentation period in which 4 stimuli were presented from
the same condition, each for 2.8 s followed by a 200ms interstimulus
interval, resulting in 12 s of stimulus presentation. The duration of each
condition block was 20 s (8 s fixation and 12 s stimulus presentation).
For each run, the 12 condition blocks and the initial and final fixation
blocks lasted 252 s (4min 12 s). Each participant completed 12 runs.

To maintain their attention, subjects were given a one-back repeti-
tion detection task in which they were instructed to press a button on an
MRI-compatible button box (fORP, Cambridge Research Systems) to
indicate the detection of a repeated stimulus within each block. There
was one stimulus repetition per block, and the repeated stimulus of each
block type was changed across runs. Because there were only three
unique trials per block but each condition had 6 unique stimuli, half of
the stimuli of each category were shown on odd runs and the other half
were shown on the even runs. These blocks were later combined during
analysis. Average performance on this task was 94%. To ensure proper
fixation, eye movements were monitored using an ASL eye-tracker.

Object localizer task. To localize functional ROIs in the ventral and
lateral occipito-temporal cortex, we presented images of objects in 6 con-
ditions: faces, scenes, head-cropped bodies, central objects, peripheral
objects (four objects per image), and phase-scrambled objects in a block
design paradigm. Subjects were instructed to fixate while 20 images were
presented in each block for 750ms with a 50ms fixation screen in
between. Each block lasted 16 s and was repeated 4 times per condition.
Each run started with a 12 s fixation period. Additional 8 s fixation peri-
ods were presented after every 5 blocks. Total run duration was 436 s
(7min 16 s). Subjects performed a motion detection task. During each
block, a random image would jitter by rapidly shifting 4 pixels back and
forth horizontally from the center of the screen. Subjects indicated detec-
tion of motion with a button press. Each participant completed 1 or 2
runs of this task.

Motion localizer task. To localize functional ROIs related to the per-
ception of biological and nonbiological motion, we presented blocks of
PLD videos of humans performing various actions in four conditions:
(1) biological motion: normal PLD video of walking, riding a bicycle,
etc.); (2) random motion: the points in the PLD were spatially scrambled
in each frame; (3) translation: randomly positioned dots translated
across the screen in a random direction with their speed set to the aver-
age speed of the movement from the PLD videos; and (4) static: a ran-
dom frozen frame of the PLD was shown as an image. There were 8
exemplars per condition, each presented for 1.5 s followed by a 500ms
interstimulus fixation period. Each block lasted 16 s and was presented 4
times per condition. Each run began with a 6 s fixation period, and 8 s
fixation periods were interspersed between each block, making the total
run duration 422.7 s (7min 3 s). Subjects performed a one-back repeti-
tion detection task, in which they indicated detection of a repeated stim-
ulus during each block by pressing a button. Each subject completed 1
or 2 runs of this task.

Topographic mapping. Topographic visual region V1 was mapped
using 16 s blocks of a vertical or horizontal polar angle wedge with an
arc of 60° flashing black and white checkerboards at 6Hz. During the
stimulus blocks, subjects fixated on a red fixation dot (5 pixel radius)

and detected a dimming on the wedge, that occurred randomly either at
the inner, middle, or outer ring of the wedge at four random times
within the 16 s block. There was a 16 s fixation period after each block,
and each run began with a 16 s period of fixation. Each run lasted 272 s
(4min and 40 s), and subjects completed 1 or 2 runs of this task.

Data analysis
fMRI data were analyzed using AFNI (Cox, 1996) and in-house
MATLAB codes. The data were preprocessed by removing the first 2
TRs of each run, motion correction, slice timing correction, smoothing
with 5 mm FWHM, and intensity normalization. The EPI scans were
registered to the anatomic volume using the first volume of the first run
and the default algorithm from AFNI. The three echoes were optimally
combined using a weighted average (Posse et al., 1999; Kundu et al.,
2012). TRs with motion exceeding 0.3 mm and outliers, defined as time
points where .10% of voxels in the brain mask deviated substantially
from the time series trend (using the default settings of 3dToutcount),
were excluded from further analysis. A GLM analysis with 12 factors (2
stimulus conditions � 6 categories) was used to extract b and t values
for each condition in each voxel. Movement parameters with 6 degrees
of freedom were used as an external regressor. To account for the effect
of residual autocorrelation on statistical estimates, we applied a general-
ized least squares time series fit with restricted maximum likelihood esti-
mation of the temporal auto-correlation structure in each voxel. Beta
values were calculated across all runs for the univariate analysis, and t
values were calculated per-run for the multivariate analysis.

ROI definition: group-constrained subject-specific method
The retinotopy task was used to identify primary visual cortex (V1), to
serve as a control region. The object category localizer task allowed us to
localize canonical ROIs in occipito-temporal cortex known to process
object category information, including lateral occipital cortex (LO), pos-
terior fusiform sulcus (pFS), and the extrastriate body area (EBA). We
also included inferior intraparietal sulcus (infIPS), a dorsal region that
has been implicated in object individuation (Xu and Chun, 2009) and
has been shown to contain abstract object category representations
(Vaziri-Pashkam and Xu, 2017; Vaziri-Pashkam et al., 2019). Using the
biological motion localizer, we identified regions selective for biological
motion over translation in LOT-biomotion. Because of the variability of
the STS biological motion region in our subjects, we were not able to
localize this region using our ROI selection method described below. For
completeness, we have included an STS region based on a probabilistic
atlas of point-light-display responsive regions (Engell and McCarthy,
2013) in our Extended Data (for an overlap map of this region with our
LOT-biomotion region, see Extended Data Fig. 1-2; for the univariate
and multivariate results, see Extended Data Fig. 2-1). Finally, as we did
not have a localizer for a tool-selective region, we included an atlas
defined supramarginal region (SMG) because it overlaps with the pa-
rietal tool-selective region (Peeters et al., 2009, 2013). This region has
also been implicated in action observation (Rizzolatti and Craighero,
2004; Caspers et al., 2010). An overlap map of our SMG ROI with meta-
analytic maps generated from studies investigating terms related to
“action observation” and “tools” from Neurosynth (Yarkoni et al., 2011)
can be found in Extended Data Figure 1-3.

Figure 1B shows the final ROIs for one example subject. We used a
systematic, unbiased method for creating individualized ROIs con-
strained by group responses to our localizer experiments, basing our
approach on a method of ROI definition developed by Kanwisher and
Fedorenko (described in Pitcher et al., 2011). First, t values were
extracted from GLMs of individual activation maps from the localizer
experiments. All subjects’ statistical activation maps (N=15) were con-
verted to Talairach space. For each subject, the individual localizer con-
trast maps were thresholded at p, 0.0001. Group overlap proportion
maps were then created for each contrast. Second, we thresholded the
group proportion maps for each contrast separately to counteract con-
trast- or localizer-specific differences in spatial variability or overall acti-
vation. The thresholds for specific contrast maps were as follows: For the
object localizer experiment, the thresholds were N� 0.7 for objects ver-
sus scrambled (LO and pFS), N� 0.5 for bodies versus objects (EBA),
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and N� 0.25 for peripheral objects versus scrambled (infIPS). For the bi-
ological motion experiment, the threshold for biological motion versus
translation was N� 0.5 (LOT-biomotion). For the retinotopy experi-
ment, positive and negative maps were created separately and thresh-
olded at N� 0.5 (V1). We then used a Gaussian blur of 1 mm FWHM.
The blurred maps were then clustered using the nearest neighbors
method and a minimum cluster size of 20 voxels. For V1, positive and
negative maps were clustered separately and then combined with a step
function. Two steps were required to finalize the group-constrained
ROIs. Anatomical landmarks were used to separate pFS from LO, and
LO from infIPS. V1 was separated from V2 using a hand-drawn region
based on the group map. All ROIs were then selected to have no overlap-
ping voxels.

The final nonoverlapping group-constrained ROIs were made sub-
ject specific by creating masks based on the individual subject’s activity
during the localizer experiments (localizer contrast threshold: p, 0.05).
For example, for each subject’s EBA, the group-constrained EBA was
masked by the subject’s response to bodies. objects with a threshold of
p, 0.05. If this process did not yield an ROI with at least 100 voxels
across the two hemispheres, the ROI was instead created with a mask
made from the mean response during the main experiment (task vs fixa-
tion, p, 0.0001 uncorrected).

The supramarginal (SMG) ROI was anatomically defined using a
Freesurfer parcellation (Desikan et al., 2006). To make the subject spe-
cific supramarginal ROIs, individual masks were made from the mean
response during the main experiment (task vs fixation, p, 0.0001
uncorrected) and intersected with the template SMG region.

Univariate analysis
To calculate the average fMRI response per condition for each ROI,
using a GLM analysis, whole-brain b value maps were extracted for
each of the 12 conditions and masked with a task . fixation thresh-
old of p, 0.0001 for each subject. The group-constrained subject-
specific ROIs were intersected with these maps, resulting in a b
value response per voxel in each ROI for all 12 conditions in each
subject. Because of previous work demonstrating animacy as an
organizing principle of object category information within occipito-
temporal cortex (Beauchamp et al., 2003; Kriegeskorte et al., 2008;
Konkle and Caramazza, 2013), for each ROI, we were interested in
differences between univariate responses to the animate and inanimate
categories as well as stimulus format. The average responses for four
conditions were calculated for each ROI: dynamic animate, dynamic in-
animate, static animate, and static inanimate. The animacy preference
was calculated as the difference between the animate and inanimate con-
ditions, separately for the static and dynamic stimulus formats. A two-
way ANOVA was conducted for each ROI, evaluating the main effects
of stimulus format and animacy and their interaction. Two-sided one-
sample t tests were conducted to determine whether the animacy prefer-
ence in each ROI, and each format was significantly different from 0. All
t tests were corrected for multiple comparisons with false discovery rate
correction (Benjamini and Hochberg, 1995) across ROIs. For ANOVAs,
effect sizes were calculated with generalized h squared (h 2

G); for the t
tests, Cohen’s d was used.

Multivariate pattern analysis
We performed multivariate pattern analyses to investigate whether
object category information was present in the fMRI responses to the
dynamic and static stimuli. We extracted t values in each voxel for every
condition in each run using a GLM analysis. To perform pairwise object
category decoding, we used a linear support vector machine classifier
(SVM) (Chang and Lin, 2011) with feature selection and a fixed regulari-
zation parameter set to the default value. The SVM was trained using
leave-one-run-out cross validation on data that was normalized with z
scoring to avoid magnitude differences between conditions. Using t tests,
we calculated the top 100 most informative voxels per ROI (Mitchell et
al., 2004) to equate the number of voxels analyzed per ROI and facilitate
comparisons between them. This feature selection was performed sepa-
rately for each iteration of training. Results did not qualitatively change
when the analysis was performed without feature selection.

We trained and tested the linear SVM in two conditions: (1) within-
classification, in which the SVM was trained and tested on the same
stimulus format; and (2) cross-classification, in which SVM was trained
in one stimulus format and tested on the other format. The classification
was performed on all unique pairs of object categories to obtain classifi-
cation accuracy matrices. The off-diagonal values of the matrices were
averaged to produce two within-format (dynamic and static) and two
cross-format (train dynamic test static, train static test dynamic) average
object category decoding accuracies per subject. The two cross-format
values were then averaged to obtain one cross-classification accuracy.
Two-sided one-sample and paired t tests were conducted to determine,
respectively: (1) if the decoding accuracy in each ROI and each format
was significantly different from chance (0.5), and (2) if the decoding ac-
curacy was significantly different across stimulus formats within each
ROI. All p values listed from t tests were corrected for multiple compari-
sons with false discovery rate correction across ROIs (Benjamini and
Hochberg, 1995). For ANOVAs, effect sizes were calculated with gener-
alized h 2

G. For the one-sample and paired t tests, Cohen’s d was used.
To ensure that our ROIs provided sufficient coverage of regions

that process static and dynamic visual input, we conducted a whole-
brain searchlight decoding analysis for object category responses to
both stimulus formats. Searchlight maps were generated for each sub-
ject using the Gaussian Naive Bayes searchlight classifier from the
Searchmight Toolbox version Darwin i386.0.2.5 in MATLAB) (Pereira
and Botvinick, 2011). The Gaussian Naive Bayes classifier was chosen
over a linear SVM to increase computational speed. Group maps were
generated by conducting a two-sided t test of the subjects’ accuracy
maps against 0.5 using AFNI’s 3dttest11, separately for the within
dynamic, within static, and across-format decoding. The across-format
maps were an average of the decoding accuracies for training on
dynamic and testing on static and vice versa. The group results for
each map were thresholded with a q value at 0.005 for the within-for-
mat maps and 0.05 for the across-format map.

Multidimensional scaling of fMRI responses
To visualize how stimulus format and object category impact the
responses in our ROIs, we quantified the similarities between the pat-
terns of fMRI responses to the 12 conditions in each ROI by calculat-
ing all pairwise Euclidean distances. The individual subject Euclidean
distances per ROI were averaged across subjects to create group
Euclidean distances, which will be referred to as the fMRI-Euclidean
matrix. We then visualized these similarities by applying classical
multidimensional scaling (Shepard, 1980) on the fMRI-Euclidean
matrix and plotting the first two dimensions for each ROI.

We measured the reliability of the fMRI-Euclidean matrix by per-
forming a leave-one-subject-out (LOSO) analysis wherein an individual
subject’s matrix was correlated with the remaining subjects’ average ma-
trix (Op de Beeck et al., 2008; Nili et al., 2014). Pearson’s correlations of
each subject were averaged across iterations to produce a final reliability
score and its standard error. The reliabilities of the dynamic and static
fMRI-Euclidean matrices were evaluated separately.

Object similarity behavioral experiment
A total of 353 participants (32% female among the 85% who responded
to the demographic survey) were recruited on Amazon Mechanical Turk
to perform an object similarity task on the dynamic or static stimuli. All
participants were located in the United States.

For each trial, participants were presented with three stimuli on a
gray screen and were instructed to select the odd-one-out stimulus (the
stimulus that was most distinct among the three) by clicking on it.
Dynamic and static stimuli were tested separately. Participants per-
formed blocks of 15 trials to complete the task and were permitted to per-
form more than one block. To ensure data quality, trials with reaction
times, 0.6 s and 1.2 s and. 10 s or 20 s were removed for the image and
video tasks, respectively. These cutoffs were decided based on the distribu-
tions of reaction times. If 5 or more trials in a block were eliminated, the
entire block (or HIT in mTurk terminology) was removed. The eliminated
blocks were resubmitted to mTurk to ensure that we had at least 2 repeti-
tions for each unique triplet allowing for 68 trials for each pair of stimuli.
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To build a dissimilarity matrix based on the odd-one-out image and
video tasks, a response matrix of the pairwise dissimilarity judgments
was constructed for each task by treating each triplet as three object pairs
and assigning 1’s to dissimilar pairs (i.e., the two pairs that included the
selected odd object) and a 0 to the similar pair (i.e., the pair that did not
include the selected odd object). We also constructed a count matrix to
determine how many times each pair was shown together in a triplet. By
dividing the response matrix by the count matrix, we obtained a dissimi-
larity matrix with values ranging from 0 to 1 with higher values denoting
higher dissimilarity. To produce a category level behavioral dissimilarity
matrix, we took the off-diagonal upper triangle of the 36� 36 matrix
and averaged the item distances that belonged to the same category,
resulting in a 6� 6 matrix, which will be referred to as the behavioral-
dissimilarity matrix. The diagonal was nonzero because of nonzero dis-
tances between exemplars within each category. Only the off-diagonal of
this matrix was used in further analyses.

To gauge the stability of the behavioral-dissimilarity matrix, we per-
formed a split-half reliability analysis. Because each subject only saw a
small set of all possible triplets, instead of splitting the data by subject,
we split based on repeats of stimulus pairs (three pairs per triplet) into
two groups. The binary similarity values for all pairs were correlated
across the two groups to produce a measure of reliability of the similarity
judgments.

Multidimensional scaling and hierarchical clustering of object similarity
responses
We visualized the structure of the object similarity judgments from the
odd-one-out tasks at the category level using classical multidimensional
scaling on the behavioral-dissimilarity matrices of the dynamic and static
stimuli separately (Shepard, 1980). The two behavioral-dissimilarity
matrices were also correlated to quantify their degree of similarity. To
investigate the structure of the object similarity judgments at the exem-
plar level, we used a hierarchical or agglomerative clustering algorithm
available in the Python package SciPy (Virtanen et al., 2020) on the
dynamic and static behavioral-dissimilarity matrices separately. For visu-
alization purposes, images of the individual exemplars, which were
adapted from the static stimuli used in the experiment, were included
under the resultant dendrograms for both static and dynamic conditions
(note that dynamic stimuli are not recognizable in static frames).

Brain-behavior correlation
To determine the relationship between the multivariate information for
the 6 categories in each ROI (fMRI-Euclidean matrix) and behavioral
assessments of the category similarity (behavioral-dissimilarity matrix), we
correlated the two measures. For each subject, the off-diagonal of the
fMRI-Euclidean matrix was correlated with the off-diagonal of the behav-
ioral-dissimilarity matrix using Pearson’s linear correlation coefficient,
separately for the dynamic and static experiments. The correlations were
then averaged across subjects. To take into account the combined noise
from the two measures, the noise ceiling was calculated for each ROI as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1� R2
p

, or the square root of the product of the reliabilities of the
fMRI-Euclidean matrix (R1, LOSO) and the behavioral-dissimilarity ma-
trix (R2, split-half), as used in previous studies (Nunnally, 1970; Op de
Beeck et al., 2008; Vul et al., 2009).

Brain-optic flow correlation
To ensure that optic flow information from the 6 object categories was
not predictive of the multivariate fMRI responses in any of the ROIs, we
performed a control analysis. We first calculated the Euclidean distances
between the dynamic stimulus information of each category by vectoriz-
ing the 4-dimensional stimuli (x-coordinates, y-coordinates, x- and y-
magnitudes of optic flow, and time: 460� 720 � 2� 180= 119,232,000
element vector) and averaging the distances between stimuli of the same
category, creating the optic flow-Euclidean matrix. We then correlated
the optic flow-Euclidean matrix with the dynamic fMRI-Euclidean ma-
trix of each ROI for each subject. Two sided one-sample t tests were
used to determine whether any positive correlations were significantly
different from zero.

Code accessibility
The stimuli and custom codes used in this study can be accessed through
the OSF website (https://osf.io/45b8y/). The scripts for stimulus presen-
tation and the object kinematograms used in the study are available
under “Manuscript Scripts” and “Manuscript Stimuli,” respectively. The
scripts used to generate the object kinematograms were included in the
“Object kinematogram generation code” at https://osf.io/eqd87/, along
with instructions and recommendations for generating optimal stimuli.
Analysis code and data will be made available on request.

Results
Effect of stimulus format on univariate animacy preference
We first looked at the mean amplitude of responses to the two
superordinate object categories (animate/inanimate) in the two
stimulus formats (static/dynamic). We extracted individual sub-
jects’ b values from the GLM analysis and averaged the response
for the 3 animate and the 3 inanimate categories within each
image format to get 4 values per subject. Figure 2 shows the
pooled results of this analysis across subjects. A two-way ANOVA
with stimulus format and animacy as factors showed a significant
main effect of stimulus format in all ROIs (F values. 5.63, p
values� 0.03, h 2

G values. 0.03) with higher response amplitudes
in the dynamic compared with the static condition. A main effect
of animacy was also found in LO, pFS, EBA, LOT-biomotion, and
left SMG (F values. 8.34, p values� 0.02, h 2

Gs. 0.03), but not in
V1, infIPS, or right SMG (F values, 2.43, p values. 0.63, h 2

G
values, 0.0004).

We subtracted inanimate responses from animate responses
to produce a measure of animacy preference within each stimu-
lus format (Fig. 3). As a post hoc comparison of the main effect of
animacy, we conducted two-sided one-sample t tests of animacy
preference against 0 (Fig. 3). For both stimulus formats, LO, pFS,
and EBA showed a preference for animate categories (dynamic: t
values. 2.84, p values, 0.03, Cohen’s d values. 0.76, static: t
values. 6.76, p values, 0.001, Cohen’s d values. 1.81), while
left SMG preferred inanimate categories (dynamic: t(14) = 4.58,
p=0.002, Cohen’s d=1.22). LOT-biomotion had a significant
preference for animate categories in the static (t(14) = 4.13, p=
0.002, Cohen’s d=1.11) but not in the dynamic condition
(t(14) = 1.28, p=0.30, Cohen’s d=0.34).

Further, there was a significant interaction between animacy
and stimulus format for pFS and left SMG (F values. 8.72, p
values, 0.04, h 2

Gs. 0.01), and not for the rest of the regions (F

Figure 2. Univariate fMRI responses to dynamic animate (purple) and inanimate (pink)
stimuli and static animate (dark green) and inanimate (teal) stimuli for each ROI. Results did
not qualitatively differ when removing the human and tool categories from the analysis.
Also, see Results from the LOT-atlas and STS-atlas regions defined by a probabilistic atlas in
Extended Data Figure 2-1A. Error bars indicate standard error of the mean.
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values � 6.35, p values. 0.06, h 2
Gs, 0.008). pFS, a ventral re-

gion known to be involved in object recognition from static
images, showed a stronger preference for animate object stimuli
in the static compared with the dynamic condition (F(14) = 10.38,
p= 0.04, h 2

G = 0.01), while left SMG, a parietal region thought to
be involved in tool processing and action observation, had a
stronger preference for inanimate object stimuli in the dynamic
compared with the static condition (F(14) = 8.72, p=0.04, h 2

G =
0.04). These significant interactions between stimulus format
and animacy preference suggest that the category preference
responses in pFS and left SMG are modulated by the format
through which the category information is provided. The most
ventral region, pFS, is more sensitive to static form presenta-
tions of animate objects; and the most dorsal lateral region, left
SMG, is more sensitive to dynamic motion information about
inanimate objects.

Effect of stimulus format on multivariate object category
representations
We next examined the multivariate patterns of each of our ROIs
to further explore how object category information is repre-
sented in the brain when sourced from dynamic movements and
static images. We first sought to test whether each of our regions
contained information about the 6 object categories within each
stimulus format. To do this, we calculated the average pairwise
classification accuracy for the 6 object categories for the static
and dynamic conditions using a linear SVM classifier (Chang
and Lin, 2011). Figure 4A shows the pooled results of this analy-
sis across subjects. Two-sided one-sample t tests revealed that
the object categories were decoded significantly above chance in
both dynamic and static formats in all regions but V1 (dynamic:
t values. 7.04, p , 0.001, Cohen’s d values. 1.82; static:
t values. 2.73, p values, 0.02, Cohen’s d values. 0.71). In V1,
significant decoding was only found in the static stimulus
condition (static: t(14) = 8.31, p, 0.001, Cohen’s d = 2.15;
dynamic: t(14) = 2.05, p = 0.06, Cohen’s d = 0.53). In all regions
but infIPS, there were significant differences between the
decoding accuracies across stimulus format (infIPS: t(14) = 0.59,
p= 0.57, Cohen’s d= 0.15). In V1, LO, pFS, and EBA decoding
accuracies were higher in the static condition than the dynamic
(t values. 2.32, p values, 0.001, Cohen’s d values. 0.60);
while in LOT-biomotion and bilateral SMG, decoding accura-
cies were higher in the dynamic condition (t values. 3.24, p
values, 0.008, Cohen’s d values. 0.84).

To ensure that the significant decoding of object category
from dynamic information was because of differences in the
responses to object categories and not contingent on differences
in optic flow information that were confounded with category in
our stimulus set, we performed a control analysis in which we
correlated the dynamic stimulus information with the multivar-
iate fMRI responses (see Materials and Methods). No signifi-
cant positive correlations were observed for any of the ROIs (t
values, 2.8, p values. 0.06). Because the 6 exemplars per cate-
gory were systematically split across runs, we were also able to
calculate the decoding accuracy across splits of the data corre-
sponding to the two sets of stimuli within the same object cate-
gory (Extended Data Fig. 4-1). This analysis mirrored our
original findings: we found robust, albeit lower, generalization
across the two sets of stimuli within the same category in all
ROIs, with the exception of V1 for the dynamic condition and
bilateral SMG for the static condition.

We next used a cross-classification method to determine
whether abstract responses to object categories, regardless of
stimulus format, were present in our ROIs. The SVM classifier
was trained in one stimulus format and then tested in the other
format. Decoding accuracies when training on static and testing
on dynamic and training on dynamic and testing on static were
averaged to produce the light gray bars shown in Figure 4B.
We also calculated the within-classification accuracy for train-
ing and testing within stimulus format (dark gray bars in Fig. 4B;
average of the two bars in Fig. 4A). Robust within-format classifi-
cation accuracy in all regions was observed, even when training
and testing across subsets of the stimuli within each category
(Extended Data Fig. 4-1). Significant cross-classification was
observed in all ROIs (t values. 5.31, p values, 0.0001, Cohen’s
d values. 1.37), and was significantly lower than within-classifi-
cation in all ROIs (t values. 5.24, p values, 0.0001, Cohen’s d
values. 1.35).

These across-format classification results and our control
analyses suggest that there is sufficient abstract information
about object categories in the multivariate pattern responses to
the dynamic and static stimuli to allow for generalization across
stimuli and formats in regions across visual cortex. In some of
the regions, including LO, pFS, LOTbio, and infIPS, across-for-
mat decoding was higher when training on the dynamic and test-
ing on the static condition (see the breakdown of training and
testing in each direction in Extended Data Fig. 4-2). This was
likely observed because the object kinematograms were better
controlled for low-level features than the static stimuli, facilitat-
ing across-format decoding, which requires that sufficient infor-
mation about object category is available in the training set.
Furthermore, a whole-brain searchlight analysis of within- and
across-format decoding using the Searchmight Toolbox (Pereira
and Botvinick, 2011) demonstrated that our ROIs cover the pri-
mary loci of object category information derived from dynamic
and static visual inputs (Fig. 4C–E).

To further visualize the similarity between the fMRI responses
to the object categories in the dynamic and static conditions, we
calculated the pairwise Euclidean distances between the patterns
of responses to the 6 object categories and the 2 stimulus formats
in each ROI. We then performed a multidimensional scaling anal-
ysis on the resultant dissimilarity matrix and visualized the first
two dimensions in each of the ROIs (Fig. 5). In all regions, there
was a clear separation between the responses to the dynamic
(shown in purple and pink) and static stimuli (shown in green
and teal). In addition, the ventro-temporal regions and inferior pa-
rietal cortex showed a separation among the individual object

Figure 3. Univariate fMRI response preference for animate compared with inanimate
object categories in dynamic (dark gray) and static (light gray) formats for each ROI. Also,
see Results from the LOT-atlas and STS-atlas regions defined by a probabilistic atlas in
Extended Data Figure 2-1B. *p, 0.05. Error bars indicate standard error of the mean.
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categories. The nearly parallel lines connecting the dynamic and
static conditions of the same category indicate that categories with
responses that were similar to each other in one condition were
also similar to each other in the other condition and are in line
with the results of the cross-classification analysis performed ear-
lier. In bilateral supramarginal areas, this object category separa-
tion was evident for the dynamic stimulus responses, but the static
stimulus responses remained clustered together. In V1, while there
was a separation between dynamic and static conditions, the
arrangement of categories does not appear to be consistent across
conditions.

Odd-one-out behavioral experiment
To investigate how the responses of each ROI to the 6 object
categories in each format relate to the behavioral measure of

similarity, we performed two behavioral experiments on
Amazon Mechanical Turk. We showed participants three objects
(either in static format or in dynamic format) and asked them to
judge the similarity between the three objects and pick the odd-
one-out. We calculated two dissimilarity matrices based on the
responses: one for the static stimuli and one for the dynamic
stimuli (see Materials and Methods). We then averaged the indi-
vidual object distances from each category to obtain dissimilarity
scores between the 6 object categories for the 2 stimulus formats
(Fig. 6A). The reliability of these similarity judgments was eval-
uated for each stimulus format separately (see Materials and
Methods). Participants rated both stimulus formats with highly
stable similarity judgments (split-half reliabilities: r= 0.98 for
both dynamic and static stimuli). We used multidimensional
scaling on the pairwise dissimilarities of each stimulus format to

Figure 4. Object category SVM decoding accuracies in each ROI and across the whole brain. A, Average SVM decoding accuracies when training and testing within the dynamic (pink) and
static (teal) conditions. All average decoding accuracies were significantly above chance except for the dynamic condition in V1. Above chance decoding was also found when generalizing across
subsets of the stimuli within each category in the dynamic and static formats (Extended Data Fig. 4-1). B, Average within (dark) and across (light) format decoding accuracies. Within stimulus
format decoding accuracies were produced by averaging the dynamic and static decoding accuracies in A. Cross classification was significantly above chance in all ROIs. Above chance cross clas-
sification was observed when training on the dynamic and testing on the static format, and vice versa (Extended Data Fig. 4-2). See also results from the LOT-atlas and STS-atlas regions defined
by a probabilistic atlas in Extended Data Fig. 2-1C, D. Error bars indicate standard error of the mean. Asterisks within the bars represent significance in t tests against chance. Asterisks above
bars represent paired t tests across conditions. *p, 0.05. **p, 0.001. ***p, 0.0001. C–E, Whole-brain group t value maps for decoding (C) within dynamic, (D) within static, and (E) across
stimulus format. Whole-brain searchlight analysis showed results consistent with our ROI analysis. Color bars represent the range of t values for the group comparison against 0.5. Within-for-
mat maps were thresholded at q= 0.005, and the across-format map was thresholded at q= 0.05.

628 • J. Neurosci., January 25, 2023 • 43(4):621–634 Robert et al. · Representation of Dynamic and Static Object Information

https://doi.org/10.1523/JNEUROSCI.0371-22.2022.f4-1
https://doi.org/10.1523/JNEUROSCI.0371-22.2022.f4-2
https://doi.org/10.1523/JNEUROSCI.0371-22.2022.f2-1


visualize the distance between object categories in the first
two dimensions (Fig. 6A). The dynamic and static similarity
judgments had highly similar structures, showing a clear sep-
aration between animate and inanimate categories in the first
dimension. The animate (human, mammal, and reptile) and
inanimate (tool, pendulum/swing, and ball) categories were
also separated from each other along the second dimension
for both types of stimuli. Overall, the dissimilarities from the

dynamic and static tasks were highly correlated (r = 0.98,
p = 2.80e-10).

To further explore the similarity structure of the dynamic and
static stimuli at the exemplar level, a hierarchical clustering algo-
rithm was used on the odd-one-out similarity judgments (Fig. 7).
Similar to the MDS of odd-one-out judgments at the category
level, a gross distinction between animate and inanimate objects
was observed for both the static and dynamic conditions. Also,

Figure 6. Odd-one-out similarity judgments of dynamic and static stimuli at the category level. Matrices represent pairwise dissimilarity scores between object categories in dynamic (A) and
static (C) stimulus formats. Circle plots represent the object categories projected into the first two dimensions from multidimensional scaling on the dissimilarities in the dynamic (B) and static
(D) stimuli. The 6 object categories are symbolized with the same icon designation as in Figure 5. Category abbreviations (dynamic/static): human (HD/HS), mammal (MD/MS), reptile (RD/RS),
tool (TD/TS), pendulum/swings (PD/PS), and balls (BD/BS).

Figure 5. Multidimensional scaling visualization of fMRI response similarity between the object categories presented in the dynamic and static formats. MDS was performed on the similarity
matrix obtained from the Euclidean distances of response patterns for the 12 conditions in each ROI. Dotted lines connect dynamic and static presentations of the same object category. Purple
represents the dynamic condition. Green represents the static condition. Within each condition, the darker hues represent the animate categories, while the lighter hues represent the inanimate
categories. The 6 object categories are symbolized with the following icons: human (person walking), mammal (cat), reptile (snake), tool (hammer), pendulum/swing (swing), and ball (soccer
ball). Also, see Results from the LOT-atlas and STS-atlas regions defined by a probabilistic atlas in Extended Data Figure 2-1E, F.
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the 3 object categories within the animate and inanimate
superordinate categories are largely distinguished. We also see
that the individual stimuli are primarily clustered within their
object categories in both stimulus formats, suggesting that,
when luminance-defined edges are not available, robust cate-
gory information can be derived from dynamic motion-iso-
lated inputs.

To investigate how the fMRI responses to object categories in
each format relate to behavioral judgments of similarity, we cor-
related the dissimilarity scores from the dynamic and static be-
havioral experiments (split-half reliabilities: dynamic 0.985,
static 0.985) to those obtained from the Euclidean distances
between the multivariate response patterns in each ROI
(LOSO reliabilities: dynamic 0.676 0.12, static 0.616 0.20).
As shown in Figure 8, most ventral and lateral temporal
regions (LO, pFS, EBA, LOT-biomotion) showed significant
correlations with the object similarity judgments for both the
dynamic and static stimuli (dynamic: r values. 0.25, p values,
0.007; static: r values. 0.15, p values, 0.05). These results replicate

previous findings of robust correspondence between similarity
judgments and fMRI responses to both static images (Cohen
et al., 2017; Xu and Vaziri-Pashkam, 2019) and human body
movements (Hafri et al., 2017; Yargholi et al., 2021) and dem-
onstrate that the motion-defined representations of dynamic
object category information show a similar correspondence in
these regions. The responses in infIPS and right SMG were
not correlated to object similarity judgments for either the
dynamic or static stimuli (dynamic: r values, 0.13, p values.
0.11, static: r values, 0.02, p values. 0.58). While lack of cor-
relation in these regions was unexpected, previous work has
shown that dorsal regions have lower correlations with behav-
ioral similarity judgments relative to ventral and lateral regions
(Cohen et al., 2017; Xu and Vaziri-Pashkam, 2019). The activity
in left SMG was significantly correlated with the similarity
judgments for the dynamic stimuli (r= 0.33, p= 0.001), but not
for the static stimuli (r= 0.04, p= 0.59). Similarly, the activity in
V1 was significantly correlated with similarity judgments for
the static stimuli (r = 0.13, p= 0.02), but not for the dynamic

Figure 7. Hierarchical clustering of odd-one-out similarity judgments of the dynamic and static stimuli at the exemplar level. Edited versions of the static stimuli were used to visualize the
similarity structure of both the dynamic (top) and static (bottom) stimuli, as the category of the dynamic stimuli cannot be gleaned from individual frames. The scale and position of the objects
are not representative of the stimuli during presentation. Stimulus borders were colored to distinguish the 6 object categories: humans (pink), mammals (orange), reptiles (yellow), tools
(blue), pendulums & swings (teal), and balls (green). The human stimulus examples were modified into two-tone images for this figure to de-identify the individuals in the stimuli.
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stimuli (r= 0.11, p= 0.14). The only significant difference be-
tween the correlations of the behavioral similarity judgments
and the fMRI responses to the two conditions was found in the
left SMG area, in which the correlation was significantly higher
with similarity judgments of the dynamic stimuli compared
with the static stimuli (t(14) = 3.32, p= 0.04, Cohen’s d= 0.86).
These findings demonstrate that responses in the ventral and
lateral region driven by both static and dynamic visual infor-
mation contain robust object category information related to
the object similarity judgments, while the left SMG only con-
tains object similarity information when driven by its pre-
ferred stimulus format (dynamic). For regions such as infIPS
and right SMG, the object category responses may be struc-
tured for a different purpose that is unrelated to subjective
similarity judgments.

Discussion
Motion is an important visual cue that can provide category-rele-
vant information in the absence of luminance-defined edges and
form. Here, we introduce a novel approach to systematically sep-
arate form and motion signals and study the contribution of the
motion signal to object category processing in isolation. To our
knowledge, our study is the first to use this approach to compare
the neural processing of form and motion signals from several
animate and inanimate object categories. We sought to deter-
mine whether category-relevant information from the two sour-
ces is shared across the visual system by comparing dynamic and
static category processing in ROIs across visual occipito-tempo-
ral and parietal cortices. The two highly dissimilar information
sources produced distinct but sufficiently overlapping represen-
tations of animate and inanimate object categories to allow for
across-format decoding in all higher-order ROIs.

Categorizing objects with motion information
We first tested whether the objects in our object kinemato-
grams were recognizable with an online object identification
task. Our behavioral study shows that not only do people
accurately categorize motion-defined animate objects (Pinto,
1994, 2006; Pavlova et al., 2001), they also accurately catego-
rize at least three motion-defined inanimate object categories.
These results and our odd-one-out similarity task demonstrate
that: (1) a wide range of animate and inanimate objects can be
recognized from just motion information; and (2) people
judge the similarity of objects from the two sources of infor-
mation in a similar way.

Broadly speaking, two types of object information can be
gleaned from motion cues: (1) structure from motion, that is, a
percept of a form arising from the global integration of coherent
local motion vectors; and (2) types of actions or features of
actions that are diagnostic of a particular object, such as walking,
fighting, tool use, bouncing, etc. Although systematically distin-
guishing these two sources was not within the scope of this
study, both factors likely play an important role in subjects’
judgments of object similarity. Novel object kinematograms
that capture a greater range of actions from many viewpoints
will be instrumental in teasing apart their relative contributions
to object recognition from dynamic inputs.

Format-dependent processing of object categories
Our findings suggest that stimulus format matters for: (1) proc-
essing of animate and inanimate objects, indicated by the ROIs
with significant interactions between stimulus format and uni-
variate animacy preference (i.e., pFS and left SMG); and (2) dis-
criminating object categories within-format, indicated by regions
with significant differences in the multivariate classification ac-
curacy of the responses to dynamic and static stimuli (i.e., all
regions but infIPS). The most ventral and posterior regions (LO,
EBA, and pFS) showed higher classification in the static condi-
tion, while the most dorsal and anterior regions (LOT-biomotion
and bilateral SMG) had stronger classification in the dynamic
condition. Interestingly, infIPS used both sources of infor-
mation equivalently. Importantly, all ROIs but V1 showed
robust responses to, and significant decoding accuracies of,
all categories presented in both static image and dynamic
motion formats. Thus, differential multivariate responses to
object categories based on stimulus format in these regions
are a matter of degree.

Animate and inanimate category processing frommotion
and form
In a study comparing responses to dynamic and static cues for
humans and tools, Beauchamp et al. (2003) compared univariate
fMRI responses between (1) full form videos and static images of
humans and tools and (2) full form videos and PLDs of humans
and tools. Beauchamp et al. (2003) argued for two processing
pathways: form and motion. Lateral temporal regions (STS and
MTG) respond to their preferred category, humans and tools,
respectively, in both PLDs and videos, suggesting category pref-
erence from motion without requiring form. Meanwhile, ven-
tral temporal cortex (lateral and medial fusiform) needed form
information for category preference responses. Our results

Figure 8. Correlation of Euclidean distance between multivariate fMRI responses and behavioral dissimilarity matrices for (A) dynamic and (B) static stimuli. *p, 0.05. Error bars indicate
standard error of the mean. Dotted lines indicate the average noise ceiling for each ROI.
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demonstrate that this animacy preference topography is not
exclusive to human and tool categories: it also expands to other
animate objects, such as mammals and reptiles, and other inan-
imate objects, such as pendulums/swings and balls. It is possible
that large-scale animacy preference maps (Konkle and
Caramazza, 2013; Sha et al., 2015) found with static objects in
the brain are also present for motion-defined stimuli.

Distinct but overlapping representations of object category
for dynamic and static stimuli
We used a cross-classification approach to identify regions that
have format independent responses. A similar analysis has been
used previously to study fMRI responses to human actions in full
form videos and images (Hafri et al., 2017). Our results are largely
in qualitative agreement with those of Hafri et al. (2017), with the
exception that we found significantly more widespread cross-clas-
sification, possibly because our static stimuli were source matched
to our dynamic stimuli. Cross-decoding in all regions, apart from
V1, suggests that the object category representations driven by
static and dynamic information were sufficiently distinct to allow
for significant within-format classification, but also sufficiently
overlapping that their shared information could lead to significant
cross-classification. These results suggest the existence of abstract
object category responses that pool information about object cate-
gory across various cues in the visual input, in line with previous
reports of cross-modal integration in visual cortex in neurotypical
and congenitally blind individuals (Fairhall and Caramazza, 2013;
Peelen et al., 2014; Kumar et al., 2017).

Relationship between brain and behavior
Multivariate responses to the dynamic and static conditions in
the ventral and lateral regions (LO, pFS, EBA, and LOT-biomo-
tion) were correlated with the object similarity judgments of the
dynamic and static stimuli, respectively. There were no differen-
ces in correlation between the two formats. This implies that the
fMRI responses in these regions follow the structure of the stim-
ulus similarity characterized by our odd-one-out experiment.
The only region to show a difference in correlation across the
stimulus conditions was the left SMG, which showed higher cor-
relations for the fMRI responses to the dynamic stimuli. By con-
trast, the fMRI responses in the right SMG showed no significant
correlation with behavioral judgments for either condition, indi-
cating lateralization of category processing within the supramar-
ginal area to the left hemisphere. This left lateralization has been
shown previously in research on tool processing (Beauchamp et
al., 2003; Peeters et al., 2013; Rüther et al., 2014) and in studies of
modality-independent category processing across images and
words (Fairhall and Caramazza, 2013; Wurm and Caramazza,
2019). Importantly, not all regions that showed significant ani-
macy preference or object category decoding had responses that
were significantly correlated with the similarity structure of the
behavioral judgments. In V1 and infIPS, the fMRI responses to
both conditions were unrelated to the similarity judgments of
both stimulus types, suggesting that these regions were extracting
features irrelevant to similarity judgments on the objects.

Contributions of the dorsal, ventral, and lateral visual
pathways
Giese and Poggio (2003) have suggested segregation between
processing of motion and form in the visual system. They argue
that motion is predominantly processed in traditionally “dorsal”
regions, while form is reserved for the ventral stream (Giese and
Poggio, 2003). In a recent review, Pitcher and Ungerleider (2021)

have suggested the presence of a third “lateral” motion-sensitive
visual pathway for social visual processing (i.e., for the percep-
tion of face and body movements). In line with these theories, we
found more information for objects in the static condition in the
ventral pFS region and in the dynamic condition in lateral LOT-
biomotion and dorsal SMG regions. However, above chance
decoding for both static and dynamic conditions in all regions
argues against strict segregation of the processing of motion
from form. One possible reason we observe significant category
decoding from motion cues in the ventral stream is that both
dorsal/lateral and ventral pathways receive similar inputs from
early motion sensitive areas, such as V3 (McLeod et al., 1996; Ho
and Giaschi, 2009). Another explanation is that bidirectional
connectivity between dorsal/lateral and ventral pathways supports
the transfer of task relevant information (O’Toole et al., 2002;
Bernstein and Yovel, 2015; Freud et al., 2018; Collins et al., 2019;
Ayzenberg and Behrmann, 2022). While we cannot distinguish
between these possibilities, our within-dynamic and across-format
decoding results demonstrate that motion-derived object category
information is not limited to dorsal/lateral regions.

Despite our emphasis on the distributed processing of
dynamic object category cues in the two or three pathways, the
neuropsychological literature suggests that each contributes
something different to object category processing from dynamic
cues. For example, patients with damage to the ventral form path-
way might show deficits in structure from motion perception but
intact PLD recognition (Gilaie-Dotan et al., 2013, 2015). These
studies suggest that, while the form pathway is not strictly neces-
sary for recognition of PLDs, it could facilitate extracting form
from complex motion to create more robust multiview represen-
tations of objects. Furthermore, case studies have demonstrated
that lower-level motion performance (e.g., motion identification
and coherence) can be impaired without corresponding complete
impairment to the recognition of PLDs, a higher-level motion
task (Vaina et al., 1990; Mcleod et al., 1996). In addition, it has
been shown that damage to dorsal parietal cortex could lead to
deficits in visual search for biological motion without an impair-
ment in form from motion (Battelli et al., 2003). These results
suggest distinct roles of regions in ventral and dorsal/lateral path-
ways in the recognition of our dynamic stimuli, but additional
experiments are required to confirm these conjectures.

In conclusion, our study demonstrates that, in regions across
occipito-temporal and parietal cortices, category responses driven
by isolated motion signals parallel category responses to static form
signals in a number of ways. Regions that are traditionally consid-
ered part of the visual object recognition pathway that processes
static information also extract robust object category information
from isolated motion signals. Indeed, object category information
from static and dynamic signals overlaps. Future studies can fur-
ther probe the nature of motion-defined object representations by
generating kinematograms of a larger set of objects performing dif-
ferent movements from multiple viewpoints. Such studies will be
important for furthering our understanding of how, in a dynamic
scene with multiple objects, various visual cues to object category
are processed and integrated together to form rich and robust
object representations in the human brain.
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