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Threat-related information attracts attention and disrupts ongoing behavior, and particularly so for more anxious individuals.
Yet, it is unknown how and to what extent threat-related information leave lingering influences on behavior (e.g., by imped-
ing ongoing learning processes). Here, human male and female participants (N= 47) performed probabilistic reinforcement
learning tasks where irrelevant distracting faces (neutral, happy, or fearful) were presented together with relevant monetary
feedback. Behavioral modeling was combined with fMRI data (N= 27) to explore the neurocomputational bases of learning
relevant and irrelevant information. In two separate studies, individuals with high trait anxiety showed increased avoidance
of objects previously paired with the combination of neutral monetary feedback and fearful faces (but not neutral or happy
faces). Behavioral modeling revealed that high anxiety increased the integration of fearful faces during feedback learning, and
fMRI results (regarded as provisional, because of a relatively small sample size) further showed that variance in the predic-
tion error signal, uniquely accounted for by fearful faces, correlated more strongly with activity in the right DLPFC for more
anxious individuals. Behavioral and neuronal dissociations indicated that the threat-related distractors did not simply disrupt
learning processes. By showing that irrelevant threats exert long-lasting influences on behavior, our results extend previous
research that separately showed that anxiety increases learning from aversive feedbacks and distractibility by threat-related
information. Our behavioral results, combined with the proposed neurocomputational mechanism, may help explain how
increased exposure to irrelevant affective information contributes to the acquisition of maladaptive behaviors in more anxious
individuals.
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Significance Statement

In modern-day society, people are increasingly exposed to various types of irrelevant information (e.g., intruding social media
announcements). Yet, the neurocomputational mechanisms influenced by irrelevant information during learning, and their
interactions with increasingly distracted personality types are largely unknown. Using a reinforcement learning task, where
relevant feedback is presented together with irrelevant distractors (emotional faces), we reveal an interaction between irrele-
vant threat-related information (fearful faces) and interindividual anxiety levels. fMRI shows provisional evidence for an
interaction between anxiety levels and the coupling between activity in the DLPFC and learning signals specifically elicited by
fearful faces. Our study reveals how irrelevant threat-related information may become entrenched in the anxious psyche and
contribute to long-lasting abnormal behaviors.

Introduction
In modern-day society, people are increasingly exposed to emo-
tionally loaded information that is irrelevant for ongoing and
prospective behaviors (e.g., via online news and social media).
Moreover, efficient everyday learning requires the ability to
ignore peripheral information that is not indicative of, but pre-
sented in the vicinity of, actual performance feedback (e.g., intru-
sive social media notifications). The ability to filter out irrelevant
information is therefore important for an individual’s everyday
function and well-being, even when not experienced first-hand.
For example, media exposure to disasters and violence relate to
negative psychological outcomes (Holman et al., 2014; Hopwood
and Schutte, 2017), and information regarding potential threats,
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obtained via social interactions, may induce maladaptive behav-
iors (Atlas, 2019; Lindstrom et al., 2019). Finally, distracted learn-
ing has detrimental effects on learning performance in general (for
review, see Schmidt, 2020). Surprisingly, the neurocomputational
mechanisms influenced by affective irrelevant information
during learning, and how these interact with personality
types that are more easily distracted by affective informa-
tion, are largely unknown.

Threat-related distractors attract attention and disrupt
ongoing behavior, and particularly so for more anxious individ-
uals (Bishop et al., 2004; Bar-Haim et al., 2007; Cisler and
Koster, 2010). While there are obvious adaptive advantages of
being more attuned to potential threats (e.g., increased surviv-
ability) (Ohman, 1986; Grillon, 2002; Robinson et al., 2012),
such a sensitivity may have maladaptive properties if subse-
quent behaviors are guided by irrelevant threat-related infor-
mation. More generally, failures to ignore irrelevant aversive
feedback information could compromise future decision by
assigning inappropriate aversive properties to stimuli and the
actions that elicited them.

Three different behavioral hypotheses were considered: (1)
the null hypothesis that affective distractors have no impact
on the learning; (2) affective distractors disrupt the learning
(i.e., learning performance in conditions with affective dis-
tractors should be reduced); and (3) affective distractors are
integrated during learning (i.e., learning performance, respec-
tively, increases and decreases when affective distractors are
congruent/incongruent with the relevant feedback). Because
anxious individuals are more distracted by threat-related in-
formation, we predicted an interaction between inter-individ-
ual anxiety levels and irrelevant threat-related information
during learning.

To explore the neuronal correlates, our a priori analyses
focused on the DLPFC given that it has been implicated in
attentional selection, such that the DLPFC is engaged when dis-
tractors consist of threat-related stimuli, or stimuli to which
participants attended in a previous experimental phase (Fales et
al., 2008; Browning et al., 2010). For example, Browning et al.
(2010) first trained participants to attend either neutral or fear-
ful faces, and reported increased activity in the DLPFC when
the attuned stimulus types were subsequently presented as dis-
tractors in a different task. Second, converging evidence sug-
gests that aberrant prediction error encoding in the right
DLPFC is involved in the acquisition of irrelevant associations
(Corlett et al., 2007, 2016), with the prediction error being the
mismatch between an experienced and a predicted outcome
(Sutton and Barto, 1998). Accordingly, some studies report that
prediction error encoding in the R DLPFC correlated with an
individual’s tendency to learn associations in conditions that
normally prevent the formation of stimulus-outcome associa-
tions (Corlett and Fletcher, 2012, 2015). As such, abnormal
updating of stimulus-outcome contingencies in the R DLPFC
may cause learning about stimuli and events that should nor-
mally be ignored, eventually leading to the formation of malad-
aptive beliefs and behaviors. Following reviewer suggestions,
we also performed post hoc analyses to elucidate potential
roles for the amygdala. This is relevant because the amygdala
is activated by emotional distractors (for review, see Carretié,
2014), plays a role in emotional learning (for review, see
Phelps, 2006), and has been implicated in encoding predic-
tion errors (Averbeck and Costa, 2017; Aberg et al., 2020b).
Additionally, amygdala activation during aversive learning and
the presentation of irrelevant distractors has been correlated

with differences in anxiety levels (for reviews, see Bishop et al.,
2004; Lissek et al., 2005; Bishop, 2007; Aupperle and Paulus,
2010; Duval et al., 2015).

Materials and Methods
Participants
After having provided written consent according to the ethical regula-
tions of the Weizmann Institute of Science, 51 participants joined the
experiment (behavioral pilot study/fMRI study: 20/31). All participants
were right-handed, native Hebrew speakers, and without any previous
history of psychiatric or neurologic disorders. The study was performed
in accordance with the Declaration of Helsinki.

To ensure sufficient power regarding the behavioral effects in the
fMRI study, a power analysis was conducted using data from the behav-
ioral pilot study. This analysis showed that 16 participants are required
to detect a one-tailed Pearson correlation coefficient of 0.548 (as
obtained in the pilot study) with a power (1-b ) of 0.8 and error proba-
bility (a) of 0.05. However, because 16 participants are not sufficient to
detect interindividual differences in fMRI activation, we recruited addi-
tional participants to be more in-line with previous fMRI studies that
investigated fMRI activation as a function of trait anxiety in learning and
decision-making tasks, for example, n= 31 (Browning et al., 2015),
n=32 (Bijsterbosch et al., 2015), n= 25 (Xu et al., 2013), n=30 (Fung et
al., 2019), and n=28 (Aberg et al., 2022).

Two participants frequently fell asleep in the MRI scanner (as
indicated by frequently missed trials and post-task interviews). One
participant did not perform the task satisfactorily (they pressed the
same button in all trials of a block), and one participant displayed ex-
cessive movement in all three blocks of learning (as indicated by
translational movements in a direction larger than the relevant voxel
dimension) (Wylie et al., 2014). Therefore, data from 27 participants
were included in the subsequent analyses of fMRI data (20 females;
average age 6 SD: 25.6676 4.961), while data from 20 different par-
ticipants were included in the behavioral pilot study (11 females; av-
erage age 6 SD: 27.3506 4.171). Trait anxiety was estimated using
the State-Trait Anxiety Inventory (Spielberger et al., 1983).

Experimental design and statistical analyses
Reinforcement learning task with distracting emotional faces

Task description. In each trial, participants were presented with a
pair of objects and selected the object believed to be more likely to pro-
vide Correct feedback (see Fig. 1A). The best object in each pair provided
Correct feedback with a probability of 0.7 (pilot study) or 0.8 (fMRI
study), while the other object provided Correct feedback with a 0.3 (pilot
study) or 0.2 (fMRI study) probability.

A schematic of a trial progression is shown in Figure 1B. If no
response was made within 2.5 s after the presentation of the objects, the
letters “Too slow” appeared on the screen and one shekel was deducted.
The jittered durations were drawn from a truncated exponential distri-
bution (Dale, 1999), with an average duration of 3 s and a maximum du-
ration of 10 s. To prevent difficulties in identifying the numerical
feedback, the location of the feedback number on the screen was identi-
cal to the location of the preceding fixation cross.

The different feedback types provided in the experiment are shown
in Figure 1C (pilot study) and Figure 2A (fMRI study). To test for learn-
ing differences between appetitive and aversive conditions, the Correct
and Incorrect feedbacks were, respectively, 11₪ (a gain of one shekel)
or 0₪ (no shekel gained) in a Gain condition, while in a Loss condition
the Correct and Incorrect feedbacks were, respectively, 0₪ (no shekel
lost) or �1₪ (one shekel lost). The accumulated sum of shekels corre-
sponded to a monetary bonus provided at the end of the experiment. To
assess the impact of affective distractors on associative learning, the nu-
merical feedbacks were superimposed on fearful, neutral, or happy
faces (see Figs. 1C, 2A). In Affirmative pairs, the facial expression was
matched with the feedback type (e.g., a positive face was presented to-
gether with Correct feedback), while in Contradictory pairs the contin-
gencies were reversed (e.g., a positive faces was presented with
Incorrect feedback). There were slight differences in the different
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feedback types presented in the pilot and in the fMRI study.
Specifically, in the fMRI study, only emotional faces were pre-
sented in the Affirmative and Contradictory conditions because
we wanted to add a control condition (Neutral pairs) with only
neutral faces to provide a baseline of learning performance with-
out affective distractors.

The learning task was divided into three separate blocks, each
consisting of four (pilot) or six (fMRI study) different types of
pairs: Affirmative Gain, Affirmative Loss, Contradictory Gain, and
Contradictory Loss (as well as Neutral Gain and Neutral Loss for
the fMRI study). In total, 12 of 18 different pairs of objects were
used, and participants performed 120 trials per block (30 trials per
pair in the pilot, and 20 trials per pair in the fMRI study) for a total
of 360 trials. Participants were allowed a break between each block.
Pairs were presented in an interleaved fashion, such that each pair
was presented once before any other pair was repeated. Moreover,
the object pairs were randomly assigned to a condition for each
participant, and each object was presented equally many times to
the left and to the right. Finally, no facial identity was repeated
until all facial identities has been presented. For more information
regarding the stimuli, see Stimulus selection, below.

To get familiarized with the task and the different facial identities, all
participants performed one block of the task outside the scanner. Here,
two pairs of objects were presented in one Loss and one Gain pair for a
total of 40 trials. These two objects were not used for the main task.
Critically, to ensure that all participants understood the goal of the task,
they were explicitly instructed that they should try to collect as many
shekels as possible and that the faces, including their emotional expres-
sion, were irrelevant for performing the task well.

Statistical analyses. Learning performance was defined as the average
proportion of selections of the best object in each pair for Trials 16-20
(as well as Trials 26-30 for the pilot study). Correlations with trait

anxiety were conducted using Pearson’s correlation coefficient, as well as
Spearman’s rank-order correlation. Tests were one-tailed when testing
directed predictions (i.e., positive or negative correlations), while two-
tailed tests were used when no direction was predicted. The Bonferroni
correction for multiple comparisons was applied where required.

Categorization task
To provide a functional localization of the right DLPFC and the amyg-
dala, participants performed a categorization task before the learning
task. This task was inspired by a previous task in which participants cate-
gorized attended neutral and fearful faces, and which showed increased
DLPFC activation for neutral (vs fearful) faces for participants that had
been previously been attuned to fearful faces compared with participants
that had been attuned to neutral faces (see Fig. 4B, Face Attended condi-
tion in the study by Browning et al., 2010). Furthermore, the amygdala is
robustly engaged by faces, suggesting it should be activated more
strongly by faces than by numbers (Todorov, 2012). We selected a task
in which participants attended the faces, rather than presenting them as
distractors, because we wanted to prevent any task-related perceived dif-
ficulty to confound the results. For example, a differential brain activity
between distracting fearful and neutral faces could be wrongly attributed
to increased task difficulty caused by, for example, a disruptive atten-
tional bias toward fearful faces. Because it is hard to disentangle these
processes, we took advantage of previous reports of differential brain
activation when faces were in attentional focus.

Task description. Stimuli were classified as negative, neutral, or posi-
tive (see Fig. 4A). In each trial, one stimulus was presented from one of
six different stimulus types, which could be either a number (�1, 0, or
11) or an emotional face (fearful, neutral, or happy). The classification
was performed in the absence of feedback and no specific instructions
about the “correct” classification was provided. The six different stimu-
lus types were presented pseudorandomly interleaved in 15 blocks of six

Figure 1. A, Principle of the learning task in the pilot study. In each trial, participants select one object in a pair of objects. The best and worst object in each pair, respectively, provides correct feed-
back with a probability of 0.7 and 0.3. Each pair is presented 30 times, allowing participants to learn which the best object is by trial and error. B, Illustration of a trial progression. C, Schematic of the out-
comes provided in each pair type in the pilot study. In total, four different pair types were presented: Contradictory Loss, Affirmative Loss, Contradictory Gain, and Affirmative Gain. D, E, The average
change in performance across participants for the different pair types in Gain (D) and Loss (E) conditions. A hit is defined as the selection of the best object in a pair. The error bars show the standard error
of the mean. F–I, Correlations between Trait anxiety and the average learning performance for Trials 16-20 in Affirmative and Contradictory pair types. Trait anxiety correlated significantly with learning
performance in Contradictory Loss pairs only (I). *p, 0.05; ns not significant (p. 0.05). r = Pearson’s correlation coefficient. r = Spearman’s rank-order correlation coefficient.
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trials each, where one stimulus from each category was presented in
each block. The emotional and the neutral faces were exactly those used
for the learning task (see Stimulus selection). A schematic of trial pro-
gressions is shown in Figure 4A. The intertrial interval durations were
drawn from a truncated exponential distribution (Dale, 1999), with an
average duration of 3 s and a maximum duration of 10 s. In total, 90 tri-
als were performed (15 trials for each stimulus type). Each facial identity
was presented once in each of the fearful, neutral, and happy categories.
Of note, the position of the numbers and the faces directly overlapped
with the positions of the same stimuli used in the learning task.

Data analysis. The R DLPFC was defined by contrasting fearful and
neutral faces (Browning et al., 2010), while the amygdala was defined by
contrasting faces and numbers. After defining the ROI on a group level, the
average activity within the identified R DLPFC and amygdala clusters was
correlated with trait anxiety scores. Because the ROI selections were blind to
trait anxiety scores, this procedure conforms to recommendations on how
to correlate fMRI data with interindividual factors (Vul et al., 2009).

Stimulus selection
Objects
Eighteen different pairs of objects were created from a colored version of
the Snoddgrass and Vanderbilt object dataset, and only familiar objects
were selected, as determined by a familiarity rating. 4.0 (Rossion and
Pourtois, 2004). All pairs of objects used in the reinforcement learning
experiment are presented in Table 1.

Faces
Fearful, neutral, and happy faces from 15 different identities (7 males and 8
females) were selected from the Karolinska Directed Emotional Faces
(KDEF) dataset (Lundquist et al., 1998). To ensure that the different facial
expressions could be easily identified, only facial identities with a high
degree of correspondence between the expressed and the rated emotion
were selected. Specifically, only identities with a correct identification. 85%
for all of the three facial expressions (Neutral, Fearful, and Happy) were
selected (Calvo and Lundqvist, 2008). This resulted in 7 male and 8 female

identities (AF01, AF02, AF09, AF16, AF19, AF20, AF29, AF31, AM08,
AM10, AM11, AM13, AM17, AM31, AM35). All face stimuli were normal-
ized by rotating and changing the size of each face in accordance with a
template image that ensured that the relative locations of the eyes and the
tip of the nose were aligned across identities and facial expressions. Finally,
the faces were cropped using a rectangular mask which allowed part of the
hair to be included in the image.

Behavioral modeling
Q-learning
Following standard reinforcement learning theory, each object i in a pair
was assigned an expected value Qi which represents the expected

Figure 2. A, Schematic of the outcomes provided in each pair type in the fMRI study. Neutral pairs acted as control conditions by presenting Neutral faces for both Correct and Incorrect outcomes. In
total, six different pair types were presented: Contradictory Loss, Affirmative Loss, Neutral Loss, Contradictory Gain, Affirmative Gain, and Neutral Gain. B, The average change in performance across partici-
pants for the different pair types in Gain and Loss conditions. A hit is defined as the selection of the best object in a pair. Learning was statistically assessed via the average performance in Trials 16-20.
The error bars show the standard error of the mean. C–F, Learning in Affirmative and Contradictory pair types relative the Neutral control condition. Trait anxiety significantly improved/impaired learning
in Affirmative Gain pairs (C)/Contradictory Loss pairs (F). G–J, Win-stay and Lose-shift decisions in Affirmative and Contradictory pair types relative their Neutral counterparts. Trait anxiety significantly
increased behavioral switching in Affirmative Gain pairs (G) and in Contradictory Loss pairs (J). *p, 0.05; ***p, 0.001; ns not significant (p. 0.05).

Table 1. Object pairs used in the reinforcement learning task

Pair Object descriptions Object numbers

1 Pen, pencil 167, 168
2 Glasses, book 105, 30
3 Chair, table 53, 226
4 Candle, light bulb 44, 138
5 Key, door 128, 76
6 Tree, flower 241, 91
7 Belt, pants 26, 162
8 Carrot, onion 48, 157
9 Apple, pear 6, 166
10 Cat, dog 49, 73
11 Car, bus 47, 39
12 Lamp, light switch 132, 139
13 Water glass, wine glass 104, 258
14 Shoe, socks 204, 211
15 Telephone, television 227, 228
16 Moon, sun 146, 222
17 Pot, pan 179, 101
18 Fork, spoon 97, 215
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outcome if that object is selected in a trial. Qi is updated when object i
has been selected and there is a mismatch between the expected outcome
(Qi) and the actual feedback received (w ), i.e., the so-called prediction
error (d ). The update of Qi is regulated by a learning rate a as follows:

Qðt11Þi ¼ QðtÞi 1a � d ðtÞi
d ðtÞi ¼ w � QðtÞi

The probability of selecting object i in a given trial t can be estimated
by a soft-max choice probability function (Sutton and Barto, 1998) as
follows:

pðtÞi ¼ eQðtÞi �b =
�
eQðtÞi �b 1 eQðtÞj �b

�

The b parameter estimates the trade-off between exploration and ex-
ploration/randomness of choice.

Modeling the influence of distractor type
To include distractor types in the model, it was presumed that
emotional faces alter the subjective value of the received feedback.
For example, happy faces may increase the subjective value of any
feedback type, or fearful faces could specifically reduce the subjec-
tive value of neutral feedback, etc. To test these notions, the sub-
jective value of the feedback term f was fitted separately for
different types of feedback.

In the 12f model, 12 different f ’s were fitted: one f for each type
of face for 11₪ feedback (3 f ’s), �1₪ feedback (3 f ’s), 0₪ feedback
in Gain pairs (3 f ’s), and 0₪ feedback in Loss pairs (3 f ’s).

In the 9f model, 9 f ’s were fitted: one f for each type of face
for 11₪ feedback (3 f ’s), �1₪ feedback (3 f ’s), and for 0₪ feedback
across Gain and Loss pairs (3 f ’s).

In the 6f 0 model, 8 f ’s were fitted: one f collapsed across faces
for 11₪ feedback (1 f ) and �1₪ feedback (1 f ), and one f for each
type of face separately for 0₪ feedback in Gain (3 f ’s) and Loss pairs
(3 f ’s).

In the 3f 0 model, 5 f ’s were fitted: one f collapsed across faces
for 11₪ feedback (1 f ) and �1₪ feedback (1 f ), and one f for each
type of face for 0₪ collapsed across Gain and Loss pairs (3 f ’s).

In the f 0FF, f 0NH model, 4 f ’s were fitted: one f collapsed across
faces for 11₪ feedback (1 f ) and �1₪ feedback (1 f ), one f FF for
fearful faces paired with 0₪ feedback, and one f NH for neutral/happy
faces paired with 0₪ feedback.

In the f 0FFG, f 0FFL, f 0NH model, 5 f ’s were fitted: one f
collapsed across faces for 11₪ feedback (1 f ) and �1₪ feedback
(1 f ), one f FFG for fearful faces paired with 0₪ feedback in
Gain pairs, one f FFL for fearful faces paired with 0₪ feedback in
Loss pairs, and one f NH for neutral/happy faces paired with 0₪
feedback.

In the f11,f �1 model, 5 f ’s were fitted: one f collapsed across
faces for 0₪ feedback (1 f ), one f for happy faces paired with 11₪
feedback (1 f ), one f for happy faces paired with�1₪ feedback (1 f ),
one f for fearful/neutral faces paired with 11₪ feedback (1 f ), and
one f for fearful/neutral faces paired with�1₪ feedback (1 f ).

We also tested another set of models which fit separate subjective val-
ues for each numerical feedback (�1, 0, 11) independent of face type.
The impact of irrelevant affect is then added via constant “bias” terms
(« ’s).

In the 3f , 3« model, 3 f ’s were fitted: one f for each numerical
feedback type (�1, 0,11; 3 f ’s), and one « for each emotional face type
(fearful, neutral, happy; 3 « ’s).

In the 3f , «FF, «NHmodel, 3 f ’s were fitted: one f for each numer-
ical feedback type (�1, 0,11; 3 f ’s), one «FF for fearful faces (1 « ), and
one «NH for neutral/happy faces combined (1 « ).

Finally, in the 3f , «0FF, «0NH model, 3 f ’s were fitted: one f for
each numerical feedback type (�1, 0, 11; 3 f ’s), one «0FF for fearful
faces paired with 0₪ feedback (1 « ), and one «0NH for neutral/happy
faces combined and paired with 0₪ feedback (1 « ).

Model fitting and model selection procedures
For each model, the free parameters were fitted individually to each par-
ticipant’s learning behavior by minimizing the negative log-likelihood
estimate as follows:

LLE ¼ –ln
�Yn

1

pðtÞi
�

Given n trials, p(t)i is the soft-max choice probability of selecting
object i in trial t. To avoid local minima, each fit was repeated 10,000
times with different random starting points for each free parameter. All
model fits were compared by calculating the Bayesian Information
Criterion (BIC; Schwarz, 1978), which penalizes model fits based on
their complexity as follows:

BIC ¼ 2 � LLEm1 k � lnðnÞ

LLEm is the minimal log-likelihood estimate, k is the number of fit-
ted parameters, and n is the total number of trials. The most parsimoni-
ous model is the model with the lowest BIC.

To further validate the selection of the most parsimonious model, a
protected exceedance probability for each model being the best model
was calculated using a Bayesian model selection procedure (Rigoux et
al., 2014).

Model simulations
Two different model-simulations of behavior were performed to validate
the most parsimonious model.

First, a model-derived probability for selecting the best object in each
trial was calculated using each participant’s fitted parameters and the
history of previous actions and outcomes (Palminteri et al., 2017). To
confirm that these model-simulated behaviors reproduce the observed
effects of interest, we calculated the same correlations between trait anxi-
ety and learning performance in the different conditions.

Second, to determine whether specific computational parameters
drive the observed effects of interest, another set of simulations were per-
formed. These simulations first set all fitted parameters to their average
value across participants. Next, the value of the parameter of interest is
gradually changed to see whether there are associated changes in the
simulated behavioral effect of interest. Performance improvements in all
conditions were simulated, and 1000 simulations were conducted for
each data point.

MRI data
Image acquisition
MRI images were acquired using a 3T whole-body MRI scanner
(Prisma, Siemens) with a 20-channel head coil. Standard structural
images were acquired with a T1-weighted 3D sequence (MPRAGE,
TR/inversion delay time (TI)/TE = 2300/900/2.32 ms, flip angle = 8
degrees, voxel dimensions = 0.9 mm isotropic, 192 slices). Functional
images were acquired with a susceptibility weighted EPI sequence
(TR= 2000, TE = 30ms, flip angle = 75 degrees, voxel dimensions = 3 �
3� 3.5 mm, 32 slices). The phase-encoding direction was anterior-pos-
terior, the slice order was all even (2-32) followed by all odd (1-31),
with a 0% distance factor. No acceleration technique was applied. The
MRI scanner was stopped between each block of the learning task
(each block lasted ;15min), while the functional localizer task lasted
;7min.

Preprocessing
fMRI data were preprocessed and then analyzed using the GLM for
event-related designs in SPM12 (Welcome Department of Imaging
Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm). During
preprocessing, all functional volumes were realigned to the mean image
(with auto-masking applied), coregistered to the structural T1 image,
corrected for slice timing, resampled to 2 � 2 � 2 mm voxel size
(upsampling of the voxel size to these dimensions has been suggested to
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increase the sensitivity of fMRI analyses) (Hopfinger et al., 2000), nor-
malized to the MNI EPI-template, and smoothed using a 6 mm FWHM
Gaussian kernel. Please observe that the resampling of voxels is mainly
relevant for ROI identification in the functional localizer task.

First-level analyses
General procedure. At the first level, individual event types (e.g.,

feedbacks, stimuli, or button presses; depending on task, see
below) were modeled by a standard synthetic HRF. A 24-parameter
model was used to regress out head motion effects from the real-
igned data (i.e., six head motion parameters, six head motion pa-
rameters calculated as the difference between time points t and t – 1,
and the 12 corresponding squared items) (Friston et al., 1996).
Statistical analyses were performed on a voxel-wise basis across the
whole brain.

First-level analysis of the categorization task. An event-related design
was created with two different event types (stimulus onset and response
onset) for each of the six stimulus types (the numbers �1, 0, and 11,
and fearful faces, neutral faces, and happy faces). In total, 12 different
event types were created, together with a regressor of no interest which
included the onset of trials in which no response was made.

ROI
To test the a priori hypothesis regarding an involvement of the DLPFC
in the present study, an initial R DLPFC mask was created by intersect-
ing the union of Broadmann areas 9 and 46 with the middle frontal
gyrus in the right hemisphere. The resulting ROI was then dilated by a
factor of 1. All of these steps were performed using the WFU PickAtlas
toolbox which also provided predefined ROIs for Broadmann areas 9,
46, and the middle frontal gyrus (Tzourio-Mazoyer et al., 2002; Maldjian
et al., 2003, 2004). For the post hoc analysis regarding amygdala involve-
ment, an initial amygdala mask was obtained by including all available
amygdala subregions provided by the SPM Anatomy toolbox (Eickhoff
et al., 2005).

Statistical analyses
To localize the R DLPFC, we contrasted the BOLD signal evoked
by neutral and fearful faces, while the amygdala was localized by
contrasting BOLD signal evoked by faces and numbers. Significant
differential activations within the initial R DLPFC and amygdala
masks were tested via t tests implemented in SPM using an initial
search threshold of p = 0.001, and small volume correction (SVC)
using a threshold of p, 0.05 family-wise error rate (FWE) to cor-
rect for multiple comparisons. For display purposes and follow-up
analyses (e.g., correlation with individual anxiety levels), b param-
eter estimates were extracted and averaged from all voxels within
significant clusters of activation.

First-level analysis of the learning task. An event-related fMRI design
was created with three different event types (stimulus onset, response
onset, and feedback onset) for each of four trial types (Gain Correct
feedback, Gain Incorrect feedback, Loss Correct feedback, and Loss
Incorrect feedback). In addition to these 12 event types for each of three
blocks, trials in which no response was made during the picture display
were included as a regressor of no interest. To isolate the contribution of
the distractors to the prediction error signal, the prediction error term
for the selected model (d Full) was separated into two parts (for similar
procedures, see Wittmann et al., 2008; Eldar and Niv, 2015). In brief, a
“basic” prediction error term (dBasic) accounted for variance in the pre-
diction error signal when there is no differential modulation by distractor
type (i.e., the values of parameters of interest are set to be equal). Next, a
prediction error “boost” term (dBoost) was created to account for var-
iance above and beyond variance the dBasic term; the dBasic term was
subtracted from d Full in each trial t, i.e., dBoost(t) = d Full(t) – dBasic(t).
To study the fMRI correlates of the two prediction error types dBasic and
dBoost, their respective values were added as parametric modulators to
the feedback onsets. Critically, to elucidate unique variance explained by
dBoost, the values of dBoost werer orthogonalized with respect to the val-
ues of dBasic (Mumford et al., 2015).

ROIs
The R DLPFC and amygdala ROIs identified in the separate categoriza-
tion task.

Statistical analyses
Correlations between prediction errors and BOLD signal in the ROIs
were tested using an ROI approach where the average b parameter esti-
mates for each type of prediction error (d Basic, d Boost) were extracted from
all voxels within the ROIs. These b parameters were then entered into
two separate repeated-measures ANOVAs (i.e., one for each prediction
error type) with factors Gain/Loss (Gain, Loss pairs) and Feedback
(Correct, Incorrect), and Trait anxiety as continuous covariate. Follow-up
analyses were conducted using paired t tests and Pearson correlations.

Results
Behavior
Behavioral pilot study
An initial pilot study was conducted with 20 participants to
explore interactions between trait anxiety and affective distrac-
tors during learning. Learning performance was assessed as the
average proportion of correct choices in Trials 16-20 and in
Trials 26-30. Furthermore, we tested the relationship between
anxiety and learning performance separately in each of the four
conditions (i.e., Affirmative Loss, Affirmative Gain, Contradictory
Loss, and Contradictory Gain). The average learning curve for
each condition is shown in Figure 1D,E. Trait anxiety scores co-
rrelated negatively with the average performance only in the
Contradictory Loss condition (Trials 16-20: Pearson’s r = �0.548,

Table 2. Correlations between trait anxiety and learning performance in the
pilot studya

Condition

Trials 16-20 Trials 26-30

r p r p

Affirmative Gain 0.241 0.305 0.160 0.501
Affirmative Loss �0.393 0.086 �0.090 0.705
Contradictory Gain 0.179 0.451 0.288 0.219
Contradictory Loss �0.548 0.013 �0.438 0.053
ar: two-tailed uncorrected Pearson’s correlation coefficient.

Table 3. Correlations between trait anxiety and learning performance in the
fMRI studya

Condition

Trials 16-20

r p

Affirmative Gain 0.640 ,0.001
Affirmative Loss 0.049 0.810
Contradictory Gain 0.351 0.073
Contradictory Loss �0.394 0.042
aData were normalized based on the neutral condition. r: two-tailed uncorrected Pearson’s correlation
coefficient.

Table 4. Correlations between trait anxiety and the proportion of win-stay/
lose-shift responses following neutral feedback in the fMRI studya

Condition

Win-stay Lose-shift

r p r p

Affirmative Gain x x 0.343 0.080
Affirmative Loss x x 0.108 0.591
Contradictory Gain �0.134 0.505 x x
Contradictory Loss �0.420 0.029 x x
aData were normalized based on the neutral condition. r: two-tailed uncorrected Pearson’s correlation coeffi-
cient. x indicates that no such action was available for the neutral feedback in this condition.
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p=0.0125, Trials 26-30: Pearson’s r =�0.438, p=0.053, two-tailed
tests), but not in any other condition (all p values. 0.08; see
Table 2). To replicate these results, we conducted a follow-up
study where participants also underwent fMRI scanning to
provide initial insights into the neurocomputational correlates
of the behavioral effects.

fMRI study
The behavioral paradigm of the fMRI study was similar to the
one used in the pilot study, with the main addition of a control
condition used to normalize learning performance by subtracting
the learning performance in the absence of affective distractors

(i.e., with neutral faces; Fig. 2A). Learning curves are shown in
Figure 2B, and normalized average learning performances are
shown in Figure 2C–F.

First, we replicated the main result of the pilot study, namely,
a negative correlation between trait anxiety and learning
performance in the Contradictory (vs Neutral) Loss condition
(Fig. 2F; r = �0.394, p=0.021, one-tailed Pearson correlation).
Because anxiety increases the tendency to display behavioral
switching following aversive feedbacks (Aberg and Paz, 2022),
we tested whether anxious participants displayed a reduced pro-
portion of win-stay decisions for the Correct feedback in the
Contradictory Loss condition (i.e., because the fearful faces were

Figure 3. A, Difference in BIC relative the most parsimonious model (highlighted in red). Inset, The protected exceedance probability (XPp) for these models. The
most parsimonious model was the most likely model, as evidenced by an exceedance probability of 1.0. B, The average model-simulated change in performance for
the different conditions in Gain and Loss pairs. The error bars show the standard error of the mean. C–F, Model-simulated learning in Affirmative and Contradictory pair
types relative their Neutral control conditions. Trait anxiety significantly improved/impaired learning in Affirmative Gain pairs (C)/Contradictory Loss pairs (F). G, Trait
anxiety correlated negatively with the difference in the model-fitted subjective values of the neutral 0₪ outcome paired with fearful faces (f 0FF) versus neutral/happy
faces (f 0NH). H, I, Model-simulated performance improvements for gradual changes in the difference between f 0FF and f 0NH. Smaller values of f 0FF (vs f 0NH)
improve performance in Affirmative Gain pairs (H), but impair performance in Contradictory Loss pairs (I). For illustration purposes, the performance improvements for
when f 0FF is equal to f 0NH are subtracted from all data points, the x axis shows f 0NH-f 0FF, and the separate lines for Neutral and Contradictory pairs (relative
Affirmative pairs) in H were merged into one line, and similarly were the lines for Neutral and Affirmative pairs (relative Contradictory pairs) in I. J, K, For a model that
estimates separate values for the neutral 0₪ outcome paired with fearful faces in Gain (f 0FFH) and Loss (f 0FFL) conditions, trait anxiety correlated negatively with the
difference in the fitted subjective value between the neutral 0₪feedback paired with fearful faces in both Loss (J) and Gain (K) pairs compared with neutral/happy faces.
L, M, For a model that estimates separate values for the neutral 0₪ outcome paired with neutral (f 0N) or happy (f 0H) faces, trait anxiety correlated negatively with
the difference in the fitted subjective value between the neutral 0₪feedback paired with fearful faces compared with both neutral (L) and happy (M) faces. *p, 0.05.
**p, 0.01. ***p, 0.001.
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paired with the neutral 0₪ feedback). As predicted, the pro-
portion of win-stay decisions correlated negatively with trait anx-
iety in Contradictory (vs Neutral) Loss pairs (Fig. 2J; r = �0.420,
p=0.015, one-tailed Pearson correlation). A similar trend was
observed in the Contradictory Loss condition of the pilot study
(r =�0.359, p= 0.060, one-tailed Pearson correlation).

In contrast to the pilot study, we observed a positive correla-
tion between anxiety and learning performance in Affirmative
(vs Neutral) Gain pairs (Fig. 2C; r= 0.640, p= 0.001, two-tailed
Pearson correlation, p value was corrected for three unplanned
comparisons). Notably, in the fMRI study (but not the pilot
study), the neutral 0₪ feedback in Affirmative Gain pairs
was presented together with a fearful face, therefore providing
another opportunity to test whether fearful faces increase the
averseness of the neutral 0₪ feedback. Indeed, trait anxiety cor-
related positively with the proportion of lose-shift decisions in
Affirmative (vs Neutral) Gain pairs (r= 0.343, p= 0.040, one-
tailed Pearson correlation; Fig. 2G).

Finally, trait anxiety did not correlate significantly with learn-
ing performance in the remaining two conditions (Fig. 2D,E, all
uncorrected p values. 0.05, two-tailed Pearson correlations;
Table 3), nor with the behavioral switching for neutral 0₪ feed-
backs paired with happy faces (Fig. 2H,I; all uncorrected p
values. 0.05, two-tailed Pearson correlations; Table 4).

In summary, the behavioral results from the pilot and the
fMRI study suggest that distracting fearful faces increases

the averseness of the neutral 0₪ feedback for more anxious
individuals. This was demonstrated by increased behavioral
switching following this feedback combination, both when
it signaled a Correct and when it signaled an Incorrect out-
come, which, respectively, caused reduced and improved
learning performance.

Behavioral modeling
To explain how anxiety interacts with the distractors, several dif-
ferent behavioral models were designed. To support the afore-
mentioned behavioral result, different subjective feedback values
f were fitted for different feedback combinations (for details
about the different models and the model-fitting procedures, see
Materials and Methods).

A fixed-effect analysis showed an overall lower BIC for the
f 0FF, f 0NH model (Fig. 3A), indicating a better fit to behavior on
average. Additionally, a random-effects analysis indicated a pro-
tected exceedance probability of 1.0 for the same model (Fig. 3A,
inset), a result that suggests that the selected model is the most likely
model to generate the observed behavior (Stephan et al., 2009).
Together, these two complementary ways of comparing model indi-
cate the f 0FF, f 0NHmodel as being the most parsimonious model.

The selected f 0FF, f 0NH model contains six free parameters:
one learning rate a, one randomness of choice/exploration
parameter b , and four feedback parameters (f11, f�1,
f 0FF, and f 0NH). To clarify, f11 and f �1, respectively,

Table 5. Model fits and parametersa

Parameters

Models

12f 9f 6f 0 3f 0 f 0FF, f 0NH f 0FFG, f 0FFL,f 0NH f11H, f -1H 3f , 3« 3f , « FF, « NH 3f , « 0FF, « 0NH

Negative LLE 110.8 (7.8) 113.6 (7.8) 113.9 (7.8) 117.8 (7.8) 118.7 (7.8) 117.8 (7.7) 117.3 (7.7) 117.7(7.8) 118.5(7.8) 118.6 (7.8)
BIC 303.9 (15.6) 291.9 (15.6) 286.8 (15.5) 276.9 (15.5) 272.8 (15.6) 276.8 (15.5) 275.9(15.5) 282.4 (15.6) 278.3 (15.5) 278.5 (15.5)
a 0.22 (0.04) 0.21 (0.04) 0.25 (0.04) 0.23 (0.04) 0.21 (0.03) 0.24 (0.04) 0.23 (0.04) 0.23 (0.04) 0.24 (0.04) 0.24 (0.04)
b 0.07 (0.01) 0.07 (0.02) 0.10 (0.02) 0.13 (0.02) 0.12 (0.01) 0.12 (0.02) 0.10 (0.02) 0.19 (0.04) 0.19 (0.03) 0.14 (0.03)
f �1 �0.25 (0.06) �0.27 (0.07) �0.23 (0.06) �0.21 (0.06) �0.77 (0.05) �0.78 (0.05) �0.26 (0.07)
f 0 0.21 (0.06) 0.05 (0.08) 0.03 (0.08) 0.26 (0.12)
f11 0.70 (0.06) 0.81 (0.06) 0.87 (0.04) 0.76 (0.07) 0.80 (0.06) 0.74 (0.06) 0.82 (0.06)
f 0NH 0.37 (0.06)
f -1FFL �0.40 (0.08) �0.23 (0.07)
f -1NL �0.25 (0.08) �0.15 (0.06)
f -1HL �0.26 (0.08) �0.25 (0.07) �0.25 (0.08)
f 0FFL 0.15 (0.03) 0.21 (0.05) 0.27 (0.07)
f 0NL 0.20 (0.06) 0.26 (0.06)
f 0HL 0.16 (0.07) 0.22 (0.05)
f11FFG 0.59 (0.06) 0.50 (0.06)
f11NG 0.69 (0.06) 0.59 (0.07)
f11HG 0.62 (0.06) 0.53 (0.07) 0.71 (0.07)
f 0FFG 0.08 (0.09) 0.15 (0.09) 0.14 (0.12)
f 0NG 0.10 (0.09) 0.14 (0.09)
f 0HG 0.26 (0.08) 0.30 (0.09)
f 0FF 0.09 (0.05) 0.29 (0.07) 0.35 (0.06)
f 0N 0.15 (0.04) 0.33 (0.06) 0.29 (0.06)
f 0H 0.14 (0.05) 0.32 (0.07)
f -1FF,NL �0.18 (0.07)
f11FF,NL 0.59 (0.07)
« FF 0.40 (0.09) 0.45 (0.06)
« N 0.48 (0.08)
« H 0.44 (0.09)
« NH 0.49 (0.06)
« 0FF 0.04 (0.12)
« 0NH 0.07 (0.11)
aData are mean (SEM). LLE, log-likelihood estimate; a, learning rate. b determines the trade-off between exploration and exploitation. f X is the subjective value for feedback combination X. For example, f11 is the sub-
jective value for �1₪ feedback, f11 is the subjective value for 11₪ feedback, f 0FF is the subjective value for the feedback combining 0₪ and fearful faces, and f 0NH is the subjective value for 0₪ 1 happy or fearful
face. « X is the bias added for feedback combination X. For example, « 0FF is the bias term for neutral 0₪ feedback presented together with fearful faces, and « H is the bias term for happy faces.
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estimate the subjective value of 11₪ and �1₪ feedbacks
and are independent of the distracting faces, while f 0FF

and f 0NH, respectively, estimates the subjective value of the
neutral 0₪ feedback paired with fearful (f 0FF) and neutral/
happy (f 0NH) faces. Average fitted model parameters for all
models are displayed in Table 5.

To validate the model, and to conform to recent recom-
mendations that effects of interest need to be recovered using
model-simulated performance data (Palminteri et al., 2017),
the performance of the selected model was simulated using each
participant’s fitted model parameters. For visualization purposes,
the fitted learning curves of the selected model are shown in
Figure 3B. More importantly, the model successfully reproduced
the behavioral effects of interest (Fig. 3C–F; compare Fig. 2C–F).

One possible explanation for the behavioral results is that the
interaction between fearful faces and anxiety reduces the subjec-
tive value of the neutral 0₪ feedback. Corroborating this notion,
trait anxiety correlated negatively with the difference in the fitted
subjective values of the 0₪ feedback paired with fearful and
neutral/happy faces (f 0FF-f 0NH, r = �0.467, p = 0.007, one-
tailed Pearson correlation; Fig. 3G). These parameters do
not correlate significantly with trait anxiety individually (f 0FF:
r = �0.242, p=0.223; f 0NH: r = 0.051, p=0.802, two-tailed
Pearson correlations).

Additional model simulations were performed to ensure that
the impact of the interaction between distractor type and anxiety
on learning can actually be attributed to the differential subjec-
tive values of f 0FF and f 0NH. In these simulations, all model pa-
rameters are initially set to the average values of the fitted
parameters across participants’ values (i.e., a = 0.25, f11 =
�0.25, f 0FF = 0.35, f 0NH = 0.35, f11 = 0.80, and b = 0.15).
The values are held constant, except for the values of f 0FF and
f 0NH, which are gradually decreased and increased, respec-
tively, to simulate the modulation by trait anxiety (Fig. 3G).
Simulated performance improvements are calculated for
all conditions, and visualized as a comparison between

conditions (for further details, see Materials and Methods).
As would be expected, decreases in the difference between
f 0FF and f 0NH improved performance in Affirmative Gain
pairs (relative Contradictory and Neutral Gain pairs; Fig. 3H)
while reducing performance in Contradictory Loss pairs (relative
Affirmative and Neutral Loss pairs; Fig. 3I).

Finally, to illustrate the robustness of the main modeling
result, we demonstrate that the negative correlation between trait
anxiety and the relative difference between fitted 0₪ feedback
values for fearful (vs neutral and happy) faces are present across
different behavioral models. First, the f 0FFG, f 0FFG, f 0NH

model differs from the most parsimonious model by estimating
separate f 0FF’s in Gain and Loss pairs (i.e., f 0FF was separated
into two parameters, f 0FFL and f 0FFG). Trait anxiety corre-
lated negatively with the difference between f 0FFL and f NH

(r = �0.426, p = 0.013, one-tailed Pearson correlation; Fig. 3J),
and with the difference between f 0FFG and f NH (r = �0.448,

Figure 4. A, Schematic of the functional localizer task. In each trial, a number (�1, 0,11) or face (Fearful, Neutral, Happy) was presented for 2.5 s. Participants indicated whether the stimulus was
perceived as negative, neutral, or positive. No feedback was presented, and participants were not given any particular instructions regarding how stimuli should be categorized. B, The contrast between
Neutral and Fearful faces revealed a region in the a priori R DLPFC mask that was significantly more activated by Neutral versus Fearful faces. C, For visualization purposes, the average b parameter esti-
mates for Neutral and Fearful faces were extracted for all voxels within the R DLPFC cluster shown in B. D, Trait anxiety correlated negatively with the contrast between Fearful and Neutral faces for the
R DLPFC cluster. E, The contrast between Faces and Numbers revealed bilateral regions in the a priori amygdala mask that was significantly more activated by Faces versus Numbers. F, For visualization
purposes, the average b parameter estimates for Faces and Numbers were extracted for all voxels within the bilateral amygdala cluster shown in E. G, Trait anxiety did not correlate significantly with
the contrast between Faces and Numbers for the amygdala cluster.

Table 6. Repeated-measures ANOVAa

Predictor
Sum of
Squares df

Mean of
Squares F p h 2

p

(Intercept) 3.449 1 3.449 18.393 , 0.001
TrAnx 0.386 1 0.386 2.056 0.164 0.076
Error 4.688 25 0.1875
GaLo 0.0005 1 0.0005 0.001 0.972 ,0.001
TrAnx � GaLo 0.003 1 0.003 0.008 0.927 ,0.001
Error(GaLo) 10.02 25 0.401
Feedback 0.024 1 0.024 0.185 0.671 0.007
TrAnx � Feedback 0.227 1 0.227 1.776 0.195 0.066
Error(Feedback) 3.196 25 0.128
GaLo � Feedback 0.26061 1 0.261 1.357 0.255 0.051
TrAnx � GaLo � Feedback 0.001 1 0.001 0.004 0.951 ,0.001
Error(GaLo � Feedback) 4.801 25 0.192
aR DLPFC b parameter estimates for the “basic” prediction error term. TrAnx, Continuous covariate Trait
anxiety; GaLo, factor gain/loss (gain or loss pair); Feedback, factor feedback (good, bad); h 2

p , partial
h -squared.

664 • J. Neurosci., January 25, 2023 • 43(4):656–671 Aberg et al. · Irrelevant Threats Linger in High Anxiety



p= 0.010, one-tailed Pearson correlation; Fig. 3K), with a
positive correlation between f 0FFL and f 0FFG (r = 0.412,
p = 0.016, one-tailed Pearson correlation). Second, the 3f 0

model differs from the most parsimonious model by sepa-
rating the f 0NH term into two terms: one term correspond-
ing to the combination of 0₪ feedback paired with neutral
faces (f 0N) and one term for happy faces (f 0H). Trait anxiety
correlated negatively with the difference between f 0FF and f 0N

(r = �0.535, p= 0.002, one-tailed Pearson correlation; Fig. 3L),

as well as for the difference between f 0FF and f 0H (r =
�0.335, p = 0.044, one-tailed Pearson correlation; Fig. 3M),
and f 0N and f 0H were positively correlated (r = 0.816,
p, 0.001).

In summary, the selected f 0FF, f 0NH model provides the
most parsimonious fit to behavior and provides a plausible and
robust explanation for how anxiety interacts with threat-related
distractors to modulate learning performance, namely, via a
reduced subjective value of neutral 0₪ feedbacks.

Figure 5. A, The R DLPFC ROI used to analyze prediction error encoding in the learning task. B, The average (solid line) and individual (dots) b parameters for the “ba-
sic” prediction error term, d Basic, averaged across voxels within the R DLPFC ROI for the four different feedback types. On average, activity in the R DLPFC ROI correlated
significantly with the “basic” prediction error term independent of Feedback type and Trait anxiety. C, The average (solid line) and individual (dots) b parameters for
the prediction error “boost” term, d Boost, averaged across voxels within the R DLPFC ROI for the four different feedback types. On average, activity in the R DLPFC ROI did
not correlate with d Boost across the four feedback types but showed significant interactions with trait anxiety and feedback types (see main text and D–G). D–G,
Correlations between trait anxiety and d Boost within the four different feedback types. Trait anxiety correlated positively with d Boost for Incorrect feedback in Gain pairs
(D) and negatively with d Boost for Correct feedback in Loss pairs (G). The different feedbacks presented in each feedback type is shown above the corresponding plot. The
fitted subjective values for the 0₪ feedbacks differed between fearful and happy/neutral faces. H, The amygdala ROI used to analyze prediction error encoding in the
learning task. I, The average (solid line) and individual (dots) b parameters for the “basic” prediction error term, d Basic, averaged across voxels within amygdala for the
four different feedback types. On average, activity in the amygdala ROI did not correlate with the “basic” prediction error term, nor was there any interaction with trait anxi-
ety or feedback types. J, The average (solid line) and individual (dots) b parameters for the prediction error “boost” term, d Boost, averaged across voxels within the amyg-
dala ROI for the four different feedback types. On average, activity in the amygdala ROI did not correlate with d Boost, nor were there any interactions with trait anxiety or
feedback types. K–N, For visualization purposes, correlations between trait anxiety and d Boost for the four different feedback types are displayed. **p, 0.01,
***p, 0.001, ns = not significant (p. 0.05).

Aberg et al. · Irrelevant Threats Linger in High Anxiety J. Neurosci., January 25, 2023 • 43(4):656–671 • 665



Functional neuroimaging
A priori, we hypothesized that atypical prediction error encoding
in the R DLPFC, caused by the presence of threat-related distrac-
tors, contributes to the learning bias displayed by more anxious
individuals. Based on reviewer suggestions, we also conducted a
post hoc analysis with focus on the amygdala. To this end, we first
used a separate task to functionally define the ROIs to be used
when analyzing the learning task. Notably, by selecting ROIs in
a separate task, we avoid issues of double-dipping (Kriegeskorte
et al., 2009), and by selecting ROIs based on group-level data,
we minimize the possibility of inflated effect sizes when analyz-
ing interindividual differences in brain activation (Vul et al.,
2009).

Functional localization of the R DLPFC and the amygdala via
the categorization task
In the functional localizer task, participants categorized numbers
(�1, 0, 11) and faces (fearful, neutral, happy) as negative, neu-
tral, or positive (Fig. 4A). The contrast between neutral and fear-
ful faces revealed a region within an initial a priori defined R
DLPFC mask which responded more strongly to neutral (vs fear-
ful) faces (peak voxel coordinate: x=46 year = 44 z=18, T(25) =
5.151, pFWE,SVC=0.013; one-tailed paired t test, Fig. 4B,C). A
negative correlation with trait anxiety shows that the difference
in DLPFC BOLD signal between fearful and neutral faces is
larger for more anxious individuals (Fig. 4D; r = �0.514,
p=0.006, two-tailed Pearson correlation).

The contrast between faces and numbers revealed bilat-
eral activation within an initial a priori defined amygdala
mask, which responded more strongly to faces (vs numbers)
(peak voxel coordinates: x = �20 y = �6 z = �14, T(25) =
6.025, pFWE,SVC = 0.001; x = 20 y = �4 z = �14, T(25) =
6.833, pFWE,SVC, 0.001; one-tailed paired t tests, Fig. 4E,F).
The collapsed activity within this bilateral ROI showed no
correlation with trait anxiety (Fig. 4G; r = �0.005, p = 0.981,
two-tailed Pearson correlation).

The obtained R DLPFC cluster and the bilateral amygdala
cluster are subsequently used as ROIs in the analyses of predic-
tion error encoding in the learning task.

Neural correlates of prediction errors
To assess the neural correlates of the unique contribution of
f 0FF (vs f 0NH) to the prediction error signal, the prediction
error term of the full model (d Full) is separated into two terms,
d Boost and d Basic (see Materials and Methods). To assess their
neuronal correlates, the b parameter estimates of the d Boost and
the d Basic terms were extracted from all voxels within the func-
tionally defined R DLPFC and amygdala ROIs. The resulting av-
erage b parameters for each ROI were entered into two separate
repeated-measures ANOVAs, one for each prediction error type,
with factors Gain/Loss (Gain, Loss) and Feedback type (Correct,
Incorrect), and Trait anxiety as continuous covariate.

R DLPFC activity correlates with the “basic” prediction error
For the d Basic term, a repeated-measures ANOVA showed a sig-
nificant intercept term (F(1,25) = 18.39, p, 0.001, ANOVA), but
no significant main effects or interactions (all p values. 0.16,
ANOVA; Table 6). To illustrate this effect, the individual b pa-
rameters for the d Basic term collapsed across the four feedback
conditions for the R DLPFC ROI are shown in Figure 5B.

This result shows that BOLD signal in the R DLPFC correlates
significantly with the magnitude of the “basic” prediction error
signal.

R DLPFC activity correlates with the prediction error “boost” in
anxious individuals
For the d Boost term, a repeated-measures ANOVA revealed sig-
nificant interactions between Trait anxiety� Gain/Loss (F(1,25) =
6.04, p= 0.021, ANOVA), and Trait anxiety� Feedback (F(1,25) =
4.68, p=0.040, ANOVA), but no significant Trait anxiety �

Table 7. Repeated-measures ANOVAa

Predictor Sum of squares df Mean of squares F p h 2
p

(Intercept) 0.131 1 0.131 1.389 0.250
TrAnx 0.055 1 0.055 0.584 0.452 0.023
Error 2.365 25 0.095
GaLo 0.009 1 0.009 0.067 0.798 0.003
TrAnx � GaLo 0.763 1 0.763 6.041 0.021 0.195
Error(GaLo) 3.158 25 0.126
Feedback 0.027 1 0.027 0.171 0.683 0.007
TrAnx � Feedback 0.737 1 0.737 4.676 0.040 0.158
Error(Feedback) 3.939 25 0.158
GaLo � Feedback 0.802 1 0.802 5.742 0.024 0.187
TrAnx � GaLo � Feedback 0.087 1 0.087 0.622 0.438 0.024
Error(GaLo � Feedback) 3.492 25 0.140
aR DLPFC b parameter estimates for the “boost” prediction error term. TrAnx, Continuous covariate Trait
anxiety; GaLo, factor gain/loss (gain or loss pair); Feedback, factor feedback (good, bad); pGG, Greenhouse-
Geisser corrected p value; h 2

p, partial h -squared.

Table 8. Repeated-measures ANOVAa

Predictor
Sum of
squares df

Mean of
squares F p h 2

p

(Intercept) 0.168 1 0.168 2.311 0.141
TrAnx 0.009 1 0.009 0.122 0.730 0.005
Error 1.819 25 0.073
GaLo 0.051 1 0.051 0.731 0.401 0.028
TrAnx � GaLo 0.002 1 0.002 0.026 0.874 0.001
Error(GaLo) 1.757 25 0.070
Feedback 0.068 1 0.068 1.122 0.300 0.043
TrAnx � Feedback 0.004 1 0.004 0.069 0.795 0.003
Error(Feedback) 1.525 25 0.061
GaLo � Feedback 0.014 1 0.014 0.256 0.617 0.010
TrAnx � GaLo � Feedback 0.007 1 0.007 0.133 0.718 0.005
Error(GaLo � Feedback) 1.341 25 0.054
aAmygdala b parameter estimates for the “basic” prediction error term. TrAnx, Continuous covariate Trait
anxiety; GaLo, factor gain/loss (gain or loss pair); Feedback, factor feedback (good, bad); pGG, Greenhouse-
Geisser corrected p value; h 2

p, partial h -squared.

Table 9. Repeated-measures ANOVAa

Predictor
Sum of
squares df

Mean of
squares F p h 2

p

(Intercept) 0.013 1 0.013 0.190 0.667
TrAnx 0.116 1 0.116 1.698 0.205 0.064
Error 1.706 25 0.068
GaLo 0.116 1 0.116 1.911 0.179 0.071
TrAnx � GaLo 0.041 1 0.041 0.671 0.420 0.026
Error(GaLo) 1.512 25 0.061
Feedback 0.012 1 0.012 0.274 0.605 0.011
TrAnx � Feedback 0.027 1 0.027 0.615 0.440 0.024
Error(Feedback) 1.082 25 0.043

0.547 0.466 0.021
TrAnx � GaLo � Feedback 0.077 1 0.077 0.944 0.341 0.036
Error(GaLo � Feedback) 2.034 25 0.081
aAmygdala b parameter estimates for the “boost” prediction error term. TrAnx, Continuous covariate Trait
anxiety; GaLo, factor gain/loss (gain or loss pair); Feedback, factor feedback (good, bad); pGG, Greenhouse-
Geisser corrected p value; h 2

p, partial h -squared.
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Gain/Loss � Feedback interaction (F(1,25) = 0.62, p=0.438,
ANOVA). Individual b parameters for the d Boost term in the
four feedback conditions are shown in Figure 5C. Importantly,
the two a priori hypotheses were confirmed via a positive correla-
tion between trait anxiety and the b parameters of d Boost in the
Gain Incorrect feedback condition (r=0.468, p= 0.007, one-
tailed Pearson correlation; Fig. 5D), and a negative correlation in
the Loss Incorrect feedback condition (r =�0.697, p, 0.001, one-
tailed Pearson correlation; Fig. 5G). By contrast, trait anxiety did
not correlate with the b parameters of d Boost in the Gain Correct
feedback condition (r = �0.147, p=0.463, two-tailed Pearson
correlation; Fig. 5E) nor in the Loss Incorrect feedback condi-
tion (r = �0.107, p = 0.594, two-tailed Pearson correlation;
Fig. 5F). In addition to a significant Gain/Loss � Feedback
interaction (F(1,25) = 5.74, p = 0.024), no other effects or

interactions are significant (all p values. 0.24;
for a full ANOVA table, see Table 7).

In summary, these results confirm that threat-
related distractors contribute to altered prediction
error encoding in the R DLPFC for anxious indi-
viduals, and specifically so in conditions where
anxiety correlated with learning performance.

Prediction error coding in the amygdala
As in the previous analysis, the b parameter esti-
mates corresponding to the two prediction error
terms, d Boost and d Basic, were extracted from all
voxels within the amygdala ROI. The result-
ing average b parameters were entered into
the same ANOVAs used for the R DLPFC
ROI analysis.

Amygdala activity does not correlate with the
“basic” prediction error
For the d Basic term, the repeated-measures
ANOVA revealed no significant main effects
or interactions (all p values. 0.14, ANOVA;
Table 8). The intercept term, collapsed across
conditions and anxiety levels, is shown in Figure 5I
for visualization purposes.

Amygdala activity does not correlate with the
prediction error “boost”
For the d Boost term, the repeated-measures
ANOVA revealed no significant main effects or
interactions (all p values. 0.17, ANOVA; Table
9). For visualization purposes, the b parameters
for each condition are shown in Figure 5J, and
correlations with trait anxiety are shown in
Figure 5K–N.

In summary, no evidence supported a role for
the amygdala in prediction error coding.

Whole-brain correlates of the “basic” prediction
error
To validate our model-based fMRI proce-
dure, we tested whether activity in the VTA,
a region well known for its role in encoding
different aspects of reward, including predic-
tion errors (D’Ardenne et al., 2008; Bromberg-
Martin et al., 2010; Aberg et al., 2015, 2020a;
Schultz, 2016), correlated with the d Basic term.
This analysis was performed by averaging the b
parameters related to the d Basic term for all voxels
within a recently developed probabilistic in vivo

atlas of the VTA (Fig. 6A) (Pauli et al., 2018). Indeed, the average
b parameters of this VTA ROI were significantly larger than 0.0
(mean6 SEM: 0.0686 0.021), t(26) = 3.291, p=0.001, one-tailed t
test, Fig. 6B). Next, correlations with the d Basic term were tested
across the whole-brain using an FWE-corrected threshold of 0.05.
A full list of regions correlating with d Basic, surviving a threshold
of an FWE-corrected threshold of 0.05, is reported in Table 10. In
short, significant activation was observed in a midbrain region
close to the previously used VTA mask (Fig. 6C,D), in the dorsal
anterior cingulate cortex/dorsomedial PFC (Fig. 6D), in the bilat-
eral striatum (Fig. 6E,F), and in the bilateral anterior insula (Fig.
6G,H). These regions have previously been implicated in the neu-
ronal coding of prediction errors (Garrison et al., 2013).

Figure 6. A, Schematic of the VTA ROI. B, Average (solid line) and individual (dots) b parameter estimates for
the “basic” prediction error term, d Basic, within the VTA ROI. On average, BOLD signal in the VTA ROI correlated sig-
nificantly with d Basic (p= 0.001, one-tailed t test). C–H, BOLD signal in the midbrain, dorsomedial PFC, bilateral
striatum, and bilateral anterior insula correlated significantly with d Basic after applying familywise error rate correc-
tion for the whole brain. For visualization purposes, average (solid line) and individual (dots) b parameter esti-
mates were extracted from the peak voxels within each respective cluster. **p, 0.01.
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Discussion
An increased sensitivity to threat-related information is advanta-
geous in the context of immediate and actual threat avoidance
(e.g., when hearing a threatening growl in the forest) (Ohman,
1986). However, it is maladaptive if neutral/safe cues in the envi-
ronment acquire aversive associations based on irrelevant threat-
related information, and these associations subsequently guide
behavior.

Here, we report that anxious individuals avoided a neutral
stimulus following its pairing with the feedback combination
of relevant 0₪ neutral feedback and irrelevant fearful faces,
although participants were explicitly instructed that the faces are
unrelated to task performance. By showing that exposure to irrel-
evant affective information lingers and affects behavior beyond
the immediate situation, our study extends previous research
which focused on the immediate impact of affective distractors,
such as alterations in response times, hit rates, or brain activa-
tions (e.g., within the same trial) (Bar-Haim et al., 2007).

Importantly, the threat-related distractors did not simply dis-
rupt the learning process, as would be indicated by an overall
reduced learning performance in conditions with the feedback
combination of fearful faces and neutral 0₪ feedback. By con-
trast, anxious individuals displayed, respectively, reduced or
improved performance in conditions where this feedback combi-
nation represented the Correct or the Incorrect outcome. In sup-
port, behavioral modeling further showed that high anxiety was
associated with a reduced subjective value of the neutral 0₪ feed-
back when paired with fearful faces both when it signaled
Correct and Incorrect outcomes (compared with happy and neu-
tral faces). A third dissociation was observed in the fMRI data,
with a stronger/weaker coupling between the prediction
error signal, uniquely accounted for by fearful faces, and R
DLPFC BOLD signal for feedbacks where anxious individ-
uals showed increased/decreased learning performance.
Together, these results indicate that anxiety is associated

with an increased integration of irrelevant threat-related
information during feedback processing (and not just dis-
rupted learning processes). From an evolutionary perspec-
tive, it makes sense that information related to potential
threats is integrated during learning, rather than disrupt-
ing it. However, this ability comes at the cost of increased
avoidance of beneficial situations in which a potential treat
was occasionally detected.

It has been suggested that anxiety disorders develop from
abnormal learning processes, for example, amplified fear learn-
ing (Lissek et al., 2005) and overgeneralization (i.e., the transfer
of aversive properties from a fear-conditioned neutral stimulus
to other perceptually and conceptually similar neutral stimuli)
(Lissek et al., 2014). Additionally, trait anxiety (e.g., the general
tendency to experience distress in everyday life situations) may
indicate a vulnerability to develop a mental illness (Chambers et
al., 2004; Weger and Sandi, 2018). The identification of abnormal
learning processes in trait anxiety could therefore help under-
stand external factors and internal mechanisms that contrib-
ute to the development of dysfunctional behaviors and mental
illness. Based on the present results, we propose that this
includes the maladaptive formation of associations between
neutral stimuli/events and irrelevant threat-related information,
as these may result in inappropriate avoidance behaviors.

Anxious individuals showed increased integration of fearful
faces with the neutral 0₪ feedback, but not with 11₪ and �1₪
feedbacks. One potential explanation for this result could be that
anxious individuals call on additional, salient sources of informa-
tion to resolve uncertain feedbacks. To clarify, in the present
study, the �1₪ and 11₪ feedbacks always indicated the worst
and best possible outcomes, while the 0₪ feedback signaled
either a correct (in Loss conditions) or an incorrect (in Gain con-
ditions) outcome, causing it to be more uncertain. This interpre-
tation is in line with findings that anxiety increases aversion to
uncertainty (Hartley and Phelps, 2012; Grupe and Nitschke,
2013), the motivation to reduce uncertainty (Aberg et al., 2022),
and distractibility by threat-related information (Bar-Haim et al.,
2007). Future research may profit from looking at how irrelevant
salient information guides the processing of uncertain feed-
back in high anxiety.

The present study used a between-subject design to study the
interaction between anxiety and threat-related distractors during
learning. A complementary way to assess behavioral interactions
with anxiety is via alterations of stress and state anxiety, some-
thing which could be accomplished by, for example threat-of-
shock manipulations (Schmitz and Grillon, 2012; Robinson et al.,
2013). This approach is beneficial because it could be used to com-
bine a powerful within-subject design (i.e., conditions with and
without stress, or induced anxiety) with a between-subject design
(e.g., trait anxiety measures, or patient vs control groups). This
approach may be particularly fruitful to further research on find-
ings that individuals with anxious predispositions respond differ-
ently in stressful situations (Meijer, 2001; Indovina et al., 2011;
Aberg and Paz, 2022).

In accord with previous studies (for review, see Garrison et
al., 2013), a number of brain regions in the present study, includ-
ing the VTA, the striatum, anterior cingulate cortex, anterior
insula, and the R DLPFC, encoded a “basic” prediction error sig-
nal. However, only the R DLPFC of anxious individuals corre-
lated with additional variance in the prediction error signal that
was uniquely attributed to the fearful faces. This correlation was
positive in conditions where anxiety improved performance, but
negative when anxiety show impaired performance. These results

Table 10. Brain regions showing significantly positive correlations between
BOLD signal and the basic prediction error terma

Brain region Hemisphere

MNI peak coordinate

T PFWEx y z

Thalamus Right 12 �6 12 8.517 ,0.001
Superior frontal gyrus Left �6 26 54 8.498 ,0.001
Supplemental motor area Left �8 20 44 8.325 0.001
Medial frontal gyrus Left �4 28 38 8.282 0.002
Caudate Right 18 12 12 8.396 0.001
Supplemental motor area Left �6 8 62 8.347 0.001
Superior frontal gyrus Left �28 56 20 8.343 0.001
Putamen Left �22 4 8 8.293 0.001
Caudate Left �18 12 12 6.897 0.034
Putamen Left �32 �12 �4 8.205 0.002
Putamen Left �26 �10 2 7.283 0.015
Superior frontal gyrus Left �28 56 0 8.093 0.002
Supramarginal gyrus Left �54 �46 36 7.899 0.004
Insula Right 28 20 �10 7.796 0.004
Insula Left �30 26 �4 7.609 0.007
Insula Left �34 18 �10 7.397 0.011
Superior frontal gyrus Right 22 58 28 7.544 0.008
Medial frontal gyrus Left / Right 0 36 46 7.390 0.011
Supramarginal gyrus Right 54 �50 38 7.330 0.013
White matter Left �12 �8 4 7.252 0.016
Midbrain Left �8 �24 �16 7.131 0.021
apFWE indicates familywise error rate (FWEr) corrected p values for peak voxel activities across the whole
brain. T statistics were obtained from t tests. Initial search threshold: p= 0.001; minimum cluster size: 5 voxels.
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are in accordance with previous research showing that the strength
of neuronal prediction error encoding correlates with the amount
of learning (Schönberg et al., 2007; Aberg et al., 2015, 2016a), and
complement behavioral and physiological reports of links between
personality traits and reinforcement learning biases (Browning et
al., 2015; Aberg et al., 2016b, 2017). These results also bridge sepa-
rate reports of an involvement of the DLPFC in attentional bias to
threat (Bishop, 2009), prediction error encoding (Fletcher et al.,
2001; Corlett et al., 2004), and the acquisition of irrelevant associa-
tions via altered prediction error encoding (Corlett and Fletcher,
2012, 2015). Indeed, similar and converging pieces of evidence
support a theory in which aberrant prediction error encoding in
the R DLPFC is believed to enable maladaptive learning about
stimuli, events, and outcomes that are not related (Corlett et al.,
2007, 2016). The present study adds to this theory by suggesting
that one source of “aberrancy” stems from failures in suppressing
attention to irrelevant sources of threat-related information; that
is, these stimuli may grab attention and engage learning processes
like any other (relevant) stimulus, and particularly so with high
anxiety.

By contrast, we did not observe any involvement of the amyg-
dala in coding prediction errors, nor any interaction with trait
anxiety. Although the amygdala plays a prominent role in fear
learning and anxiety (Phelps, 2006; Duval et al., 2015; Tovote et
al., 2015), only scarce evidence report correlations between
amygdala activity and prediction errors (McHugh et al., 2014;
Meffert et al., 2015; Aberg et al., 2020b). One possibility is that
the amygdala codes for other features related to learning and the
prediction error signal, such as surprise, sometimes defined as
the unsigned prediction error signal (Li et al., 2011; Klavir et al.,
2013). Further, although the amygdala is activated by affective
distractors, and particularly so for more anxious individuals
(Bishop et al., 2004; Bishop, 2009), it has to our best knowledge
not been implicated in the learning of irrelevant information.

Limitations
Anxiety was estimated using the standard Spielberger’s Trait-
Anxiety Inventory (Spielberger et al., 1983), which provides a
gradual scale for the normal (subclinical) range of anxiety. Using
a continuous scale has the benefit of correlating behavior across
a distribution of anxiety scores, rather than just comparing per-
formance across two somewhat arbitrarily divided populations
(patients vs controls). Additionally, by studying anxiety within
the normal range, we can determine how maladaptive decisions
are mediated by irrelevant distractors even in healthy individuals.
Because such maladaptive decision may have a huge impact on
daily-life in all individuals, and definitely on societies and indus-
try, we actually believe that more studies should use gradual
scales over non-clinical populations (Browning et al., 2015; Fung
et al., 2019; Gagne et al., 2020). That said, Spielberger’s Trait-
Anxiety Inventory has been debated for its lack of convergent
and discriminant validity, suggesting that it estimates “negative
affectivity” rather than proneness to anxiety per-SE (Balsamo et
al., 2013). Yet, because negative affectivity is closely linked to
psychopathology (Kotov et al., 2010; Stanton and Watson, 2014),
and has been noted as a vulnerability factor for developing anxi-
ety and depression (Clark et al., 1994), our results still bear sig-
nificant relevance.

Our main behavioral results were replicated between two sep-
arate groups of participants (i.e., negative correlations between
trait anxiety and learning performance in the Contradictory Loss
condition was observed in both the pilot and in the fMRI
study), and were replicated within another condition in the

fMRI study (i.e., the feedback combination of fearful faces 1
neutral 0₪ feedback increased behavioral switching in both
the Contradictory Loss and the Affirmative Gain condition).
Furthermore, these latter results were associated with two dis-
sociations in the fMRI results, namely, opposite correlations
with trait anxiety and the coupling between R DLPFC activity
and the prediction error signal associated with fearful faces.
Being able to replicate results across- and within-groups
speaks in favor of the robustness of our results.

Importantly, we would like to stress that our fMRI findings
were obtained with a relatively small sample size (N=27), and
therefore needs to be regarded as provisional. In particular,
although many factors may contribute to the reliability of brain-
behavior correlations in fMRI data, including behavioral task,
amount of data per participant, targeted brain regions, and
method of analysis, recent efforts suggest “... that with sample
sizes in the range of those often used in fMRI studies (i.e., 20-30
participants), one cannot be confident that all of the regions
appearing to correlate with individual differences in behavior are
reliable, or that other regions have not been missed altogether”
(Grady et al., 2021). Future studies should therefore expand on
the issue and validate the robustness of the present fMRI results.

In conclusion, the present study displays a learning bias for
individuals with high trait anxiety caused by an entanglement
between threat-related distractors and ongoing learning proc-
esses. This bias may be particularly unhealthy in modern society,
where exposure to irrelevant threat-related information is
increasingly prevalent via online news reporting and social net-
working sites. The present study describes a new pathway for
how threat-related information may become entrenched in the
anxious psyche.
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