Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Stimulus-Specific Prediction Error Neurons in Mouse Auditory Cortex

Nicholas J. Audette and David M. Schneider
Journal of Neuroscience 25 October 2023, 43 (43) 7119-7129; DOI: https://doi.org/10.1523/JNEUROSCI.0512-23.2023
Nicholas J. Audette
Center for Neural Science, New York University, New York, New York 10003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David M. Schneider
Center for Neural Science, New York University, New York, New York 10003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Comparing expectation with experience is an important neural computation performed throughout the brain and is a hallmark of predictive processing. Experiments that alter the sensory outcome of an animal's behavior reveal enhanced neural responses to unexpected self-generated stimuli, indicating that populations of neurons in sensory cortex may reflect prediction errors (PEs), mismatches between expectation and experience. However, enhanced neural responses to self-generated stimuli could also arise through nonpredictive mechanisms, such as the movement-based facilitation of a neuron's inherent sound responses. If sensory prediction error neurons exist in sensory cortex, it is unknown whether they manifest as general error responses, or respond with specificity to errors in distinct stimulus dimensions. To answer these questions, we trained mice of either sex to expect the outcome of a simple sound-generating behavior and recorded auditory cortex activity as mice heard either the expected sound or sounds that deviated from expectation in one of multiple distinct dimensions. Our data reveal that the auditory cortex learns to suppress responses to self-generated sounds along multiple acoustic dimensions simultaneously. We identify a distinct population of auditory cortex neurons that are not responsive to passive sounds or to the expected sound but that encode prediction errors. These prediction error neurons are abundant only in animals with a learned motor-sensory expectation, and encode one or two specific violations rather than a generic error signal. Together, these findings reveal that cortical predictions about self-generated sounds have specificity in multiple simultaneous dimensions and that cortical prediction error neurons encode specific violations from expectation.

SIGNIFICANCE STATEMENT Audette et. al record neural activity in the auditory cortex while mice perform a sound-generating forelimb movement and measure neural responses to sounds that violate an animal's expectation in different ways. They find that predictions about self-generated sounds are highly specific across multiple stimulus dimensions and that a population of typically nonsound-responsive neurons respond to sounds that violate an animal's expectation in a specific way. These results identify specific prediction error (PE) signals in the mouse auditory cortex and suggest that errors may be calculated early in sensory processing.

  • behavior
  • cortex
  • expectation
  • hearing
  • mouse
  • prediction

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (43)
Journal of Neuroscience
Vol. 43, Issue 43
25 Oct 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Stimulus-Specific Prediction Error Neurons in Mouse Auditory Cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Stimulus-Specific Prediction Error Neurons in Mouse Auditory Cortex
Nicholas J. Audette, David M. Schneider
Journal of Neuroscience 25 October 2023, 43 (43) 7119-7129; DOI: 10.1523/JNEUROSCI.0512-23.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Stimulus-Specific Prediction Error Neurons in Mouse Auditory Cortex
Nicholas J. Audette, David M. Schneider
Journal of Neuroscience 25 October 2023, 43 (43) 7119-7129; DOI: 10.1523/JNEUROSCI.0512-23.2023
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • behavior
  • cortex
  • expectation
  • hearing
  • mouse
  • prediction

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Category-selective representation of relationships in visual cortex
  • Auditory corticofugal neurons transmit auditory and non-auditory information during behavior
  • Phosphorylation of RPT6 controls its ability to bind DNA and regulate gene expression in the hippocampus of male rats during memory formation
Show more Research Articles

Systems/Circuits

  • Auditory corticofugal neurons transmit auditory and non-auditory information during behavior
  • Effective Regulation of Auditory Processing by Parvalbumin Interneurons in the Tail of the Striatum
  • A Developmental Switch in Cholinergic Mechanisms of Modulation in the Medial Nucleus of the Trapezoid Body
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.