Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Featured ArticleResearch Articles, Cellular/Molecular

Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus

James A. Jones, Matthew H. Higgs, Erick Olivares, Jacob Peña and Charles J. Wilson
Journal of Neuroscience 22 February 2023, 43 (8) 1281-1297; DOI: https://doi.org/10.1523/JNEUROSCI.1969-22.2023
James A. Jones
1Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew H. Higgs
2Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erick Olivares
1Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erick Olivares
Jacob Peña
1Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles J. Wilson
1Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage’s effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV– neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1– neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo. As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.

SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.

  • autonomous firing
  • basal ganglia
  • collateral network
  • globus pallidus
  • oscillations
  • recurrent inhibition

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (8)
Journal of Neuroscience
Vol. 43, Issue 8
22 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus
James A. Jones, Matthew H. Higgs, Erick Olivares, Jacob Peña, Charles J. Wilson
Journal of Neuroscience 22 February 2023, 43 (8) 1281-1297; DOI: 10.1523/JNEUROSCI.1969-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus
James A. Jones, Matthew H. Higgs, Erick Olivares, Jacob Peña, Charles J. Wilson
Journal of Neuroscience 22 February 2023, 43 (8) 1281-1297; DOI: 10.1523/JNEUROSCI.1969-22.2023
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • autonomous firing
  • basal ganglia
  • collateral network
  • globus pallidus
  • oscillations
  • recurrent inhibition

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
  • Activity-dependent Nr4a2 induction modulates synaptic expression of AMPA receptors and plasticity via a Ca2+/CRTC1/CREB pathway
  • Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System
Show more Research Articles

Cellular/Molecular

  • Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
  • Activity-dependent Nr4a2 induction modulates synaptic expression of AMPA receptors and plasticity via a Ca2+/CRTC1/CREB pathway
  • Alternative splicing of the flip/flop cassette and TARP auxiliary subunits engage in a privileged relationship that fine-tunes AMPA receptor gating
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.