Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Development/Plasticity/Repair

AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats

Hayk A. Petrosyan, Valentina Alessi, Kristin Lasek, Sricharan Gumudavelli, Robert Muffaletto, Li Liang, William F. Collins III, Joel Levine and Victor L. Arvanian
Journal of Neuroscience 1 March 2023, 43 (9) 1492-1508; DOI: https://doi.org/10.1523/JNEUROSCI.1276-22.2023
Hayk A. Petrosyan
1Northport Veterans Affairs Medical Center, Northport, New York 11768
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valentina Alessi
1Northport Veterans Affairs Medical Center, Northport, New York 11768
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristin Lasek
1Northport Veterans Affairs Medical Center, Northport, New York 11768
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sricharan Gumudavelli
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Muffaletto
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Li Liang
1Northport Veterans Affairs Medical Center, Northport, New York 11768
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William F. Collins III
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joel Levine
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Victor L. Arvanian
1Northport Veterans Affairs Medical Center, Northport, New York 11768
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

NG2 is a structurally unique transmembrane chondroitin sulfate proteoglycan (CSPG). Its role in damaged spinal cord is dual. NG2 is considered one of key inhibitory factors restricting axonal growth following spinal injury. Additionally, we have recently detected its novel function as a blocker of axonal conduction. Some studies, however, indicate the importance of NG2 presence in the formation of synaptic contacts. We hypothesized that the optimal treatment would be neutralization of inhibitory functions of NG2 without its physical removal. Acute intraspinal injections of anti-NG2 monoclonal antibodies reportedly prevented an acute block of axonal conduction by exogenous NG2. For prolonged delivery of NG2 function neutralizing antibody, we have developed a novel gene therapy: adeno-associated vector (AAV) construct expressing recombinant single-chain variable fragment anti-NG2 antibody (AAV-NG2Ab). We examined effects of AAV-NG2Ab alone or in combination with neurotrophin NT-3 in adult female rats with thoracic T10 contusion injuries. A battery of behavioral tests was used to evaluate locomotor function. In vivo single-cell electrophysiology was used to evaluate synaptic transmission. Lower urinary tract function was assessed during the survival period using metabolic chambers. Terminal cystometry, with acquisition of external urethral sphincter activity and bladder pressure, was used to evaluate bladder function. Both the AAV-NG2Ab and AAV-NG2Ab combined with AAV-NT3 treatment groups demonstrated significant improvements in transmission, locomotion, and bladder function compared with the control (AAV-GFP) group. These functional improvements associated with improved remyelination and plasticity of 5-HT fibers. The best results were observed in the group that received combinational AAV-NG2Ab+AAV-NT3 treatment.

SIGNIFICANCE STATEMENT We recently demonstrated beneficial, but transient, effects of neutralization of the NG2 proteoglycan using monoclonal antibodies delivered intrathecally via osmotic mini-pumps after spinal cord injury. Currently, we have developed a novel gene therapy tool for prolonged and clinically relevant delivery of a recombinant single-chain variable fragment anti-NG2 antibody: AAV-rh10 serotype expressing scFv-NG2 (AAV-NG2Ab). Here, we examined effects of AAV-NG2Ab combined with transgene delivery of Neurotrophin-3 (AAV-NT3) in adult rats with thoracic contusion injuries. The AAV-NG2Ab and AAV-NG2Ab+AAV-NT3 treatment groups demonstrated significant improvements of locomotor function and lower urinary tract function. Beneficial effects of this novel gene therapy on locomotion and bladder function associated with improved transmission to motoneurons and plasticity of axons in damaged spinal cord.

  • Bladder Function
  • Locomotion
  • NG2
  • Proteoglycan
  • SCI
  • Transmission

SfN exclusive license.

View Full Text

Member Log In

Log in using your username and password

Enter your Journal of Neuroscience username.
Enter the password that accompanies your username.
Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

The Journal of Neuroscience: 43 (9)
Journal of Neuroscience
Vol. 43, Issue 9
1 Mar 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats
Hayk A. Petrosyan, Valentina Alessi, Kristin Lasek, Sricharan Gumudavelli, Robert Muffaletto, Li Liang, William F. Collins III, Joel Levine, Victor L. Arvanian
Journal of Neuroscience 1 March 2023, 43 (9) 1492-1508; DOI: 10.1523/JNEUROSCI.1276-22.2023

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats
Hayk A. Petrosyan, Valentina Alessi, Kristin Lasek, Sricharan Gumudavelli, Robert Muffaletto, Li Liang, William F. Collins III, Joel Levine, Victor L. Arvanian
Journal of Neuroscience 1 March 2023, 43 (9) 1492-1508; DOI: 10.1523/JNEUROSCI.1276-22.2023
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • Bladder Function
  • locomotion
  • NG2
  • Proteoglycan
  • SCI
  • Transmission

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Cortically-evoked movement in humans reflects history of prior executions, not plan for upcoming movement
  • Neuronally-derived soluble Abeta evokes cell-wide astrocytic calcium dysregulation in absence of amyloid plaques in vivo
  • Effect of aging and a dual orexin receptor antagonist on sleep architecture and NREM oscillations including a REM Behavior Disorder phenotype in the PS19 mouse model of tauopathy
Show more Research Articles

Development/Plasticity/Repair

  • Physiologic and nanoscale distinctions define glutamatergic synapses in tonic vs phasic neurons
  • ADAMTS-4 enhances oligodendrocyte differentiation and remyelination by cleaving NG2 proteoglycan and attenuating PDGFRα signaling
  • Interleukin (IL)-1 Receptor Signaling Is Required for Complete Taste Bud Regeneration and the Recovery of Neural Taste Responses following Axotomy
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.