Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Nonresponsive Neurons Improve Population Coding of Object Location

Myriah Haggard and Maurice J. Chacron
Journal of Neuroscience 15 January 2025, 45 (3) e1068242024; https://doi.org/10.1523/JNEUROSCI.1068-24.2024
Myriah Haggard
1Quantitative Life Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maurice J. Chacron
2Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maurice J. Chacron
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • Peer Review
  • PDF
Loading

Abstract

Understanding how heterogeneous neural populations represent sensory input to give rise to behavior remains a central problem in systems neuroscience. Here we investigated how midbrain neurons within the electrosensory system of Apteronotus leptorhynchus code for object location in space. In vivo simultaneous recordings were achieved via Neuropixels probes, high-density electrode arrays, with the stimulus positioned at different locations relative to the animal. Midbrain neurons exhibited heterogeneous response profiles, with a significant proportion (65%) seemingly nonresponsive to moving stimuli. Remarkably, we found that nonresponsive neurons increased population coding of object location through synergistic interactions with responsive neurons by effectively reducing noise. Mathematical modeling demonstrated that increased response heterogeneity together with the experimentally observed correlations was sufficient to give rise to independent encoding by responsive neurons. Furthermore, the addition of nonresponsive neurons in the model gave rise to synergistic population coding. Taken together, our findings reveal that nonresponsive neurons, which are frequently excluded from analysis, can significantly improve population coding of object location through synergistic interactions with responsive neurons. Combinations of responsive and nonresponsive neurons have been observed in sensory systems across taxa; it is likely that similar synergistic interactions improve population coding across modalities and behavioral tasks.

  • correlations
  • heterogeneity
  • neural interactions
  • neuroethology
  • population coding

SfN exclusive license.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 45 (3)
Journal of Neuroscience
Vol. 45, Issue 3
15 Jan 2025
  • Table of Contents
  • About the Cover
  • Index by author
  • Masthead (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nonresponsive Neurons Improve Population Coding of Object Location
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Nonresponsive Neurons Improve Population Coding of Object Location
Myriah Haggard, Maurice J. Chacron
Journal of Neuroscience 15 January 2025, 45 (3) e1068242024; DOI: 10.1523/JNEUROSCI.1068-24.2024

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Nonresponsive Neurons Improve Population Coding of Object Location
Myriah Haggard, Maurice J. Chacron
Journal of Neuroscience 15 January 2025, 45 (3) e1068242024; DOI: 10.1523/JNEUROSCI.1068-24.2024
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Significance Statement
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • Peer Review
  • PDF

Keywords

  • correlations
  • heterogeneity
  • neural interactions
  • neuroethology
  • population coding

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • The Neurobiology of Cognitive Fatigue and Its Influence on Effort-Based Choice
  • Zooming in and out: Selective attention modulates color signals in early visual cortex for narrow and broad ranges of task-relevant features
  • Gestational Chlorpyrifos Exposure Imparts Lasting Alterations to the Rat Somatosensory Cortex
Show more Research Articles

Systems/Circuits

  • The Neurobiology of Cognitive Fatigue and Its Influence on Effort-Based Choice
  • Gestational Chlorpyrifos Exposure Imparts Lasting Alterations to the Rat Somatosensory Cortex
  • Transcranial focused ultrasound modulates feedforward and feedback cortico-thalamo-cortical pathways by selectively activating excitatory neurons
Show more Systems/Circuits
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.