Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Changes in the electrical properties of olfactory epithelial cells in the tiger salamander after olfactory nerve transection

LM Masukawa, B Hedlund and GM Shepherd
Journal of Neuroscience 1 January 1985, 5 (1) 136-141; https://doi.org/10.1523/JNEUROSCI.05-01-00136.1985
LM Masukawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Hedlund
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GM Shepherd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Transection of olfactory nerves causes degeneration of receptor neurons in the olfactory epithelium, followed by generation of new receptor neurons. We have carried out intracellular recordings to document changes in epithelial cell populations during receptor neuron degeneration and regrowth at 1, 2, and 4 weeks following olfactory nerve transection in the salamander. Receptor neurons were greatly reduced in numbers at 1 week, and gradually returned to the normal percentage of intracellular penetrations by 4 weeks. They had a resting membrane potential between -30 and -50 mV and high input resistance, 100 to 600 megohms, characteristically seen in normal epithelium. However, at 1 week, the receptor neurons were able to generate only a single spike in response to injected current, and did not re-acquire their ability to respond repetitively until 4 weeks. Cells with the properties of immature receptor neurons (resting membrane potential between -30 and -50 mV and high input resistance, 100 to 600 megohms, but unable to generate spikes) increased significantly in number in the post-transection period. This correlates with the burst of mitotic activity giving rise to new receptor neurons after nerve transection. Supporting cells changed their properties in the aftermath of transection. One type (A) showed a decrease in resting membrane potential and a small increase in input resistance. A second type (B) showed a very large increase in input resistance. These results imply that the degenerating receptor neurons transmit a signal that leads to changes in the functional properties of the glial-like supporting cells. These may involve changes in the membrane properties or in electrical coupling between cells.

Back to top

In this issue

The Journal of Neuroscience: 5 (1)
Journal of Neuroscience
Vol. 5, Issue 1
1 Jan 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Changes in the electrical properties of olfactory epithelial cells in the tiger salamander after olfactory nerve transection
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Changes in the electrical properties of olfactory epithelial cells in the tiger salamander after olfactory nerve transection
LM Masukawa, B Hedlund, GM Shepherd
Journal of Neuroscience 1 January 1985, 5 (1) 136-141; DOI: 10.1523/JNEUROSCI.05-01-00136.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Changes in the electrical properties of olfactory epithelial cells in the tiger salamander after olfactory nerve transection
LM Masukawa, B Hedlund, GM Shepherd
Journal of Neuroscience 1 January 1985, 5 (1) 136-141; DOI: 10.1523/JNEUROSCI.05-01-00136.1985
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.