Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

The regulation of synaptic strength within motor units of the frog cutaneous pectoris muscle

LO Trussell and AD Grinnell
Journal of Neuroscience 1 January 1985, 5 (1) 243-254; https://doi.org/10.1523/JNEUROSCI.05-01-00243.1985
LO Trussell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AD Grinnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The physiological properties of frog neuromuscular junctions may vary widely in a single muscle. In order to understand the factors that contribute to this variation, we have studied populations of synapses belonging to individual motor units of the frog cutaneous pectoris muscle. Motor units in this muscle differ widely in twitch strength. A motor axon's synaptic contacts could be found throughout the muscle, at both singly and polyneuronally innervated endplates. Indeed, over 36% of the endplates contacted by each isolated motor axon were polyneuronally innervated. Comparisons of synapses on muscle fibers in large twitch motor units with those in small twitch motor units reveal that endplate potential amplitude, transmitter release, and muscle fiber diameter are positively correlated with the strength of the motor unit contraction. Large and small twitch motor units differ more in their transmitter release than in their nerve terminal length, indicating that larger twitch motor units have a higher release per unit length of terminal. Among motor units of roughly similar twitch tension, transmitter release at endplates receiving only one axonal input is remarkably constant, independent of postsynaptic muscle fiber input resistance, or, presumably, nerve terminal size. In cases where two different motor axons contribute to a single endplate, the synaptic strength of each input is again related to properties of the contributing motoneuron, although the individual synaptic inputs are markedly reduced in strength and size relative to singly innervated endplates. Additionally, the diameter of polyneuronally innervated muscle fibers appears related to properties of both innervating motoneurons. Thus, the pre- and postsynaptic characteristics of neuromuscular junctions may be determined both by the motoneuron and by peripheral interactions between motoneurons.

Back to top

In this issue

The Journal of Neuroscience: 5 (1)
Journal of Neuroscience
Vol. 5, Issue 1
1 Jan 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The regulation of synaptic strength within motor units of the frog cutaneous pectoris muscle
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The regulation of synaptic strength within motor units of the frog cutaneous pectoris muscle
LO Trussell, AD Grinnell
Journal of Neuroscience 1 January 1985, 5 (1) 243-254; DOI: 10.1523/JNEUROSCI.05-01-00243.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The regulation of synaptic strength within motor units of the frog cutaneous pectoris muscle
LO Trussell, AD Grinnell
Journal of Neuroscience 1 January 1985, 5 (1) 243-254; DOI: 10.1523/JNEUROSCI.05-01-00243.1985
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.