Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Synaptic plasticity in the molluscan peripheral nervous system: physiology and role for peptides

CJ Coates and AG Bulloch
Journal of Neuroscience 1 October 1985, 5 (10) 2677-2684; DOI: https://doi.org/10.1523/JNEUROSCI.05-10-02677.1985
CJ Coates
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AG Bulloch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The plasticity of a synapse in the molluscan peripheral nervous system was examined under a variety of experimental, physiological, and pharmacological conditions. These studies employed the isolated salivary glands and attached buccal ganglia of the freshwater snail Helisoma. Action potentials evoked in buccal neuron 4 normally evoke a large excitatory postsynaptic potential (EPSP) which drives an action potential in gland secretory cells. In order to measure modulation of the EPSP, action potential generation in gland cells was prevented by bathing the preparation in low calcium, high magnesium salines. The relationship between the gland EPSP amplitude and specific physiological properties of neuron 4 was analyzed. In common with some central molluscan synapses, the EPSP was found to be strongly influenced by the membrane potential of neuron 4. Specifically, its amplitude was reduced by hyperpolarization of the neuron 4 soma. The relationship between EPSP amplitude and somatic potential of neuron 4 was linear in the range from resting potential (-47 +/- 6mV) to -100 mV. Furthermore, the EPSP amplitude was directly proportional to the action potential half-width of neuron 4. In order to evaluate the possible physiological role of this action potential/EPSP relationship, we examined whether gland EPSPs are modulated during the spike broadening that occurs in both spontaneous burst activity and imposed impulse trains. The preceding action potential/EPSP relationship was maintained under both of these conditions, i.e., EPSP magnitude increased as spikes broadened during bursts or trains. The peptidergic modulation of neuroglandular transmission was also examined. The molluscan peptide SCPB was found to depolarize neuron 4 and an increase in EPSP amplitude was concomitantly observed.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 5 (10)
Journal of Neuroscience
Vol. 5, Issue 10
1 Oct 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Synaptic plasticity in the molluscan peripheral nervous system: physiology and role for peptides
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Synaptic plasticity in the molluscan peripheral nervous system: physiology and role for peptides
CJ Coates, AG Bulloch
Journal of Neuroscience 1 October 1985, 5 (10) 2677-2684; DOI: 10.1523/JNEUROSCI.05-10-02677.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Synaptic plasticity in the molluscan peripheral nervous system: physiology and role for peptides
CJ Coates, AG Bulloch
Journal of Neuroscience 1 October 1985, 5 (10) 2677-2684; DOI: 10.1523/JNEUROSCI.05-10-02677.1985
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.