Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study

C Shin, HB Pedersen and JO McNamara
Journal of Neuroscience 1 October 1985, 5 (10) 2696-2701; DOI: https://doi.org/10.1523/JNEUROSCI.05-10-02696.1985
C Shin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HB Pedersen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JO McNamara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Quantitative radiohistochemistry was utilized to study alterations of gamma-aminobutyric acid (GABA) and benzodiazepine receptors in the kindling model of epilepsy. The radioligands used for GABA and benzodiazepine receptors were [3H] muscimol and [3H]flunitrazepam, respectively. GABA receptor binding was increased by 22% in fascia dentata of the hippocampal formation but not in neocortex or substantia nigra of kindled rats. Within fascia dentata, GABA receptor binding was increased to an equivalent extent in stratum granulosum and throughout stratum moleculare; no increase was found in dentate hilus or stratum lacunosummoleculare or stratum radiatum of CA1. The increased binding was present at 24 hr but not at 28 days after the last kindled seizure. The direction, anatomic distribution, and time course of the increased GABA receptor binding were paralleled by increased benzodiazepine receptor binding. Unexpectedly, GABA receptor-mediated enhancement of benzodiazepine receptor binding was slightly attenuated in fascia dentata of kindled compared to control rats. The anatomic distribution of the increased GABA receptor binding is consistent with a localization to somata and dendritic trees of dentate granule cells. We suggest that increased GABA and benzodiazepine receptor binding may contribute to enhanced inhibition of dentate granule cells demonstrated electrophysiologically in kindled animals.

Back to top

In this issue

The Journal of Neuroscience: 5 (10)
Journal of Neuroscience
Vol. 5, Issue 10
1 Oct 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study
C Shin, HB Pedersen, JO McNamara
Journal of Neuroscience 1 October 1985, 5 (10) 2696-2701; DOI: 10.1523/JNEUROSCI.05-10-02696.1985

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study
C Shin, HB Pedersen, JO McNamara
Journal of Neuroscience 1 October 1985, 5 (10) 2696-2701; DOI: 10.1523/JNEUROSCI.05-10-02696.1985
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.